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▪All main thread ➠ sluggish performance

▪Make everything atomic ➠ logic races everywhere

▪Share locks for related properties ➠ complex, deadlock risk

Mutable State and Multithreading

It is extremely difficult to reason about race conditions 
in multithreaded code with shared, mutable state.





Testing
▪ Test that when the like status is changed, the like controller 

posts a notification that its height has changed 

▪ Test that when the like controller posts a notification that its 
height has changed, the story controller posts a notification 
that its height has changed 

▪ Test that when the like status is changed, the like controller 
updates its view to show the new status 

▪ (Nearly infinite permutations of changes)
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▪ Immutable models: 

▪ Deep-immutable objects 

▪ When anything changes, brand new top-level tree 

▪ Top-level “stores” are given “updates” to apply (async)
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Technical Details
▪Code-generated based on server schema 

▪Plain ol’ NSObjects (no faulting, uniquing, or lazy loading) 

▪Generated by custom templates used with mogenerator  

▪Support NSCoding for serialization/deserialization 
(no app-wide “global store”) 

▪ Lightweight “consistent cache” keeps trees in sync 
across products — eventual consistency



Immutable Views



▪ Instructions for how 
to create views 

▪ Immutable 

▪Composable 

▪One way dataflow 

▪Can be constructed 
off-main-thread

“Components”



Instructions for Creating Views
▪Components are not views; they are 

instructions for how to create them 

▪ The infrastructure creates, configures, 
and recycles UIView instances 

▪Provides layer of indirection between 
product code and UIKit



Sample Configuration

{!
  [UIImageView class],!
  {!
    {@selector(setImage:), image}!
    {@selector(setContentMode:), @(UIViewContentModeScale)},!
    {@selector(setClipsToBounds:), @YES},!
  }!
}

▪Efficient recycling: don’t re-apply “attributes” 
unless value actually changes 

▪Encourages declarative style in view code



Immutable
- (void)userTappedLike!
{!
! [FBAPI sendLikeRequestForStory:self.story];!
! self.story.doesLike = YES;!
! self.story.likeCount += 1;!
! self.likeButton.selected = YES;!
! [self.likeButton addAnimation:FBLikeAnimation()];!
! self.likeCountLabel.text = [self likeCountText];!
! if (self.likeCountLabel.hidden) {!
! ! self.likeCountLabel.hidden = NO;!
! ! [self.view setNeedsLayout];!
! }!
}



Immutable
- (void)userTappedLike!
{!
! [FBAPI sendLikeRequestForStory:self.story];!
! self.story.doesLike = YES;!
! self.story.likeCount += 1;!
! self.likeButton.selected = YES;!
! [self.likeButton addAnimation:FBLikeAnimation()];!
! self.likeCountLabel.text = [self likeCountText];!
! if (self.likeCountLabel.hidden) {!
! ! self.likeCountLabel.hidden = NO;!
! ! [self.view setNeedsLayout];!
! }!
}

- (void)userTappedLike!
{!
! [FBMutator applyLikeMutation:self.story];!
}



Immutable

UIView!
-layoutSubviews!

!
Use current (mutable) size to 
mutate the state of subviews

CPComponent!
-layoutThatFits:!

!
Given a size (parameter), 

return positions and sizes  
for children components



Composable
▪Favor composition 

over inheritance 

▪Far easier to reason about 

▪Fits naturally with 
functional style



Threadsafe Creation
▪Components are essentially a pure function from data 

model to an immutable object 

▪Since their creation has no side effects, they can be created 
off the main thread 

▪ Important for performance—feed is complex!



Why Not ReactiveCocoa?
▪ReactiveCocoa is great—we use it elsewhere 

▪Encourages a declarative style for writing UI 

▪Encourages composition 

▪No one-way dataflow: hard to trace rippling changes 

▪ Less immutability: updates mutable state 
via “signal” bindings 

▪No built-in separation from UIView, and thus no builtin 
thread safety for off-main-thread work







Objective-C++



http://www.altdevblogaday.com/2012/04/26/functional-programming-in-c/

“there is real value in pursuing functional 
programming, but it would be irresponsible to 
exhort everyone to abandon their C++ compilers 
and start coding in Lisp, Haskell, or, to be blunt, 
any other fringe language… 
C++ doesn’t encourage functional programming, 
but it doesn’t prevent you from doing it, and you 
retain the power to drop down [to whatever] nitty-
gritty goodness you find the need for.” 

—John Carmack

http://www.altdevblogaday.com/2012/04/26/functional-programming-in-c/


Type and Const Safety

NSArray *stuff; // of what?!
!
std::vector<CPComponent *> components;!
std::vector<CPComponentLayout> layouts;!
!
void CPMountLayouts(!
  UIView *container,!
  const std::vector<CPComponentLayout> &layouts!
);



Nil Safe Collections
▪Objective-C crashes if you attempt to insert nil in an array 

▪C++ containers (vector, deque, map) of Objective-C object 
type allow nil objects 

▪Functional-style map operations can insert nil objects, 
and filter can remove them



Efficiency
▪Stack-allocated objects 

▪No overhead to field lookup (vs Obj-C properties) 

▪C++ move semantics



Aggregate Initialization
▪ Terse syntax for initializing structs 

▪Allows verbosity as needed

{!
  .flex = YES,!
  .spacingBefore = 10,!
  .spacingAfter = 5!
}



Sample Code





Root Story Component

[CPStackLayoutComponent!
 newWithView:{}!
 style:{!
   .direction = CPStackLayoutDirectionVertical,!
   .alignItems = CPStackLayoutAlignItemsStretch,!
   .spacing = 10,!
 }!
 children:{!
   {[CPStoryExplanationComponent newWithStory:story]},!
   {[CPStoryHeaderComponent newWithStory:story]},!
   {[CPStoryMessageComponent newWithStory:story]},!
   {[CPStoryAttachedContentComponent newWithStory:story]},!
   {[CPStoryAttachedStoryComponent newWithStory:story]},!
   {[CPStorySubstoriesComponent newWithStory:story]},!
   {[CPStoryLikeCommentComponent newWithStory:story]}!
 }]



Button Component

[CPButtonComponent!
 newWithTitles:{}!
 titleColors:{}!
 images:!
 {!
   {UIControlStateNormal, [UIImage imageNamed:@"save"]},!
   {UIControlStateHighlighted, [UIImage imageNamed:@"saveHighlighted"]},!
   {UIControlStateSelected, [UIImage imageNamed:@"saveSelected"]},!
 }!
 backgroundImages:{}!
 titleFont:nil!
 selected:[[entity hasViewerSaved] boolValue]!
 enabled:YES!
 action:@selector(didTapSaveButton:)!
 attributes:{}]



Substories
Functional-style map operation

CP::map(substories, ^(FBMemFeedStory *substory){!
  return CPStackLayoutComponentChild({!
    [CPFeedEmbeddedStoryComponent!
     newWithStory:substory]!
  });!
});



Future of Components
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