


Functional Programming 
in Facebook for iOS

Adam Ernst 
Facebook New York





Image Credit: Apple



Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model



Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model



Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model



Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model



Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model



Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model



Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model

does_like = true



Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model

does_like = true



Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model

does_like = true



Mutable State and Multithreading



▪All main thread ➠ sluggish performance

Mutable State and Multithreading



▪All main thread ➠ sluggish performance

▪Make everything atomic ➠ logic races everywhere

Mutable State and Multithreading



▪All main thread ➠ sluggish performance

▪Make everything atomic ➠ logic races everywhere

▪Share locks for related properties ➠ complex, deadlock risk

Mutable State and Multithreading



▪All main thread ➠ sluggish performance

▪Make everything atomic ➠ logic races everywhere

▪Share locks for related properties ➠ complex, deadlock risk

Mutable State and Multithreading

It is extremely difficult to reason about race conditions 
in multithreaded code with shared, mutable state.





Testing
▪ Test that when the like status is changed, the like controller 

posts a notification that its height has changed 

▪ Test that when the like controller posts a notification that its 
height has changed, the story controller posts a notification 
that its height has changed 

▪ Test that when the like status is changed, the like controller 
updates its view to show the new status 

▪ (Nearly infinite permutations of changes)





Like Button Like Controller

Story ControllerStory View

Feed ControllerFeed View

Model

does_like = true



Like Component

Story Component

Feed Component

Model



Like Component

Story Component

Feed Component

Model

does_like = true



Like Component

Story Component

Feed Component

Model

does_like = true

Like Component

Story Component

Feed Component



Immutable Models



Immutable Model Object
▪ Traditional model frameworks: 

▪ Mutable, thread-affined objects 

▪ Property change notifications 

▪ “Save” to propagate changes to elsewhere in app



Immutable Model Object
▪ Traditional model frameworks: 

▪ Mutable, thread-affined objects 

▪ Property change notifications 

▪ “Save” to propagate changes to elsewhere in app

▪ Immutable models: 

▪ Deep-immutable objects 

▪ When anything changes, brand new top-level tree 

▪ Top-level “stores” are given “updates” to apply (async)



http://en.wikipedia.org/wiki/Persistent_data_structure

http://en.wikipedia.org/wiki/Persistent_data_structure


Technical Details
▪Code-generated based on server schema 

▪Plain ol’ NSObjects (no faulting, uniquing, or lazy loading) 

▪Generated by custom templates used with mogenerator  

▪Support NSCoding for serialization/deserialization 
(no app-wide “global store”) 

▪ Lightweight “consistent cache” keeps trees in sync 
across products — eventual consistency



Immutable Views



▪ Instructions for how 
to create views 

▪ Immutable 

▪Composable 

▪One way dataflow 

▪Can be constructed 
off-main-thread

“Components”



Instructions for Creating Views
▪Components are not views; they are 

instructions for how to create them 

▪ The infrastructure creates, configures, 
and recycles UIView instances 

▪Provides layer of indirection between 
product code and UIKit



Sample Configuration

{!
  [UIImageView class],!
  {!
    {@selector(setImage:), image}!
    {@selector(setContentMode:), @(UIViewContentModeScale)},!
    {@selector(setClipsToBounds:), @YES},!
  }!
}

▪Efficient recycling: don’t re-apply “attributes” 
unless value actually changes 

▪Encourages declarative style in view code



Immutable
- (void)userTappedLike!
{!
! [FBAPI sendLikeRequestForStory:self.story];!
! self.story.doesLike = YES;!
! self.story.likeCount += 1;!
! self.likeButton.selected = YES;!
! [self.likeButton addAnimation:FBLikeAnimation()];!
! self.likeCountLabel.text = [self likeCountText];!
! if (self.likeCountLabel.hidden) {!
! ! self.likeCountLabel.hidden = NO;!
! ! [self.view setNeedsLayout];!
! }!
}



Immutable
- (void)userTappedLike!
{!
! [FBAPI sendLikeRequestForStory:self.story];!
! self.story.doesLike = YES;!
! self.story.likeCount += 1;!
! self.likeButton.selected = YES;!
! [self.likeButton addAnimation:FBLikeAnimation()];!
! self.likeCountLabel.text = [self likeCountText];!
! if (self.likeCountLabel.hidden) {!
! ! self.likeCountLabel.hidden = NO;!
! ! [self.view setNeedsLayout];!
! }!
}

- (void)userTappedLike!
{!
! [FBMutator applyLikeMutation:self.story];!
}



Immutable

UIView!
-layoutSubviews!

!
Use current (mutable) size to 
mutate the state of subviews

CPComponent!
-layoutThatFits:!

!
Given a size (parameter), 

return positions and sizes  
for children components



Composable
▪Favor composition 

over inheritance 

▪Far easier to reason about 

▪Fits naturally with 
functional style



Threadsafe Creation
▪Components are essentially a pure function from data 

model to an immutable object 

▪Since their creation has no side effects, they can be created 
off the main thread 

▪ Important for performance—feed is complex!



Why Not ReactiveCocoa?
▪ReactiveCocoa is great—we use it elsewhere 

▪Encourages a declarative style for writing UI 

▪Encourages composition 

▪No one-way dataflow: hard to trace rippling changes 

▪ Less immutability: updates mutable state 
via “signal” bindings 

▪No built-in separation from UIView, and thus no builtin 
thread safety for off-main-thread work







Objective-C++



http://www.altdevblogaday.com/2012/04/26/functional-programming-in-c/

“there is real value in pursuing functional 
programming, but it would be irresponsible to 
exhort everyone to abandon their C++ compilers 
and start coding in Lisp, Haskell, or, to be blunt, 
any other fringe language… 
C++ doesn’t encourage functional programming, 
but it doesn’t prevent you from doing it, and you 
retain the power to drop down [to whatever] nitty-
gritty goodness you find the need for.” 

—John Carmack

http://www.altdevblogaday.com/2012/04/26/functional-programming-in-c/


Type and Const Safety

NSArray *stuff; // of what?!
!
std::vector<CPComponent *> components;!
std::vector<CPComponentLayout> layouts;!
!
void CPMountLayouts(!
  UIView *container,!
  const std::vector<CPComponentLayout> &layouts!
);



Nil Safe Collections
▪Objective-C crashes if you attempt to insert nil in an array 

▪C++ containers (vector, deque, map) of Objective-C object 
type allow nil objects 

▪Functional-style map operations can insert nil objects, 
and filter can remove them



Efficiency
▪Stack-allocated objects 

▪No overhead to field lookup (vs Obj-C properties) 

▪C++ move semantics



Aggregate Initialization
▪ Terse syntax for initializing structs 

▪Allows verbosity as needed

{!
  .flex = YES,!
  .spacingBefore = 10,!
  .spacingAfter = 5!
}



Sample Code





Root Story Component

[CPStackLayoutComponent!
 newWithView:{}!
 style:{!
   .direction = CPStackLayoutDirectionVertical,!
   .alignItems = CPStackLayoutAlignItemsStretch,!
   .spacing = 10,!
 }!
 children:{!
   {[CPStoryExplanationComponent newWithStory:story]},!
   {[CPStoryHeaderComponent newWithStory:story]},!
   {[CPStoryMessageComponent newWithStory:story]},!
   {[CPStoryAttachedContentComponent newWithStory:story]},!
   {[CPStoryAttachedStoryComponent newWithStory:story]},!
   {[CPStorySubstoriesComponent newWithStory:story]},!
   {[CPStoryLikeCommentComponent newWithStory:story]}!
 }]



Button Component

[CPButtonComponent!
 newWithTitles:{}!
 titleColors:{}!
 images:!
 {!
   {UIControlStateNormal, [UIImage imageNamed:@"save"]},!
   {UIControlStateHighlighted, [UIImage imageNamed:@"saveHighlighted"]},!
   {UIControlStateSelected, [UIImage imageNamed:@"saveSelected"]},!
 }!
 backgroundImages:{}!
 titleFont:nil!
 selected:[[entity hasViewerSaved] boolValue]!
 enabled:YES!
 action:@selector(didTapSaveButton:)!
 attributes:{}]



Substories
Functional-style map operation

CP::map(substories, ^(FBMemFeedStory *substory){!
  return CPStackLayoutComponentChild({!
    [CPFeedEmbeddedStoryComponent!
     newWithStory:substory]!
  });!
});



Future of Components





(c) 2009 Facebook, Inc. or its licensors.  "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0


