
©2014 IBM Corporation

Building a right-sized,
do-anything runtime

using OSGi technologies
a case study  

(sort of)

Erin Schnabel
schnabel@us.ibm.com

@ebullientworks

©2014 IBM Corporation

<background>

©2014 IBM Corporation

Some notes on motivation
The full profile of WebSphere application server is awesome in
its capabilities

It is also well-known that the full profile is not well-suited
for development

We did and do listen… and were presented with a challenge:  
“Create a light-weight profile of WebSphere that starts in
under 2 seconds… [but] Don’t break any eggs” — Ian Robinson

©2014 IBM Corporation

History
WebSphere Application Server (the full profile) has been around
forever.

Big codebase

Big customer base

Big workloads

… Big inhibitors to massive change 

©2014 IBM Corporation

History
WebSphere Application Server (the full profile) has been around
forever.

Big codebase

Big customer base

Big workloads

… Big inhibitors to massive change 

This is not a complaint.
This is a problem we are 

happy to have.

©2014 IBM Corporation

History
WebSphere Application Server (the full profile) has been around
forever.

Big codebase

Big customer base

Big workloads

… Big inhibitors to massive change 

This is not a complaint.
This is a problem we are 

happy to have.

But it is still a problem.

©2014 IBM Corporation

Code that has been around
forever…

Doesn’t matter how good you are,  
or how smart you are  
 
 
 
 
 
 

©2014 IBM Corporation

Code that has been around
forever…

Doesn’t matter how good you are,  
or how smart you are

If your code lives long enough,  
and is used enough,  
it ends up looking like…  
 
 

©2014 IBM Corporation

Code that has been around
forever…

No matter how good you are,  
or how smart you are

If your code lives long enough,  
and is used enough,  
it ends up looking like…  
 
  dragons

?!

©2014 IBM Corporation

Code that has been around
forever…

No matter how good you are,  
or how smart you are

If your code lives long enough,  
and is used enough,  
it ends up looking like…  
 
  dragons

?!

Especially code that has roots  
going back to late ‘90s…

©2014 IBM Corporation

OSGi and WAS:
The first pass…

OSGi was included in WAS v6.1, in 2006

Went from lots of arbitrary jars to a few bundles

Achieved some modularity enforced by OSGi

We did not use or expose OSGi services

Compatibility constraints: WAS is the bottom of the stack

Assumptions about resource initialization and availability

Entrenched dependencies between some core elements

©2014 IBM Corporation

</background>

©2014 IBM Corporation

<cleanSlate>

This is the version of the story you won’t have
heard before…

©2014 IBM Corporation

What if…
If we could start over, what would we want?

Developer-friendly

Simple

Dynamic

Light-weight

Composable / Flexible

Extensible

©2014 IBM Corporation

What if…
If we could start over, what would we want?

Developer-friendly

Simple

Dynamic

Light-weight

Composable / Flexible

Extensible

selectable content

clear API/SPI
runtime/app isolation

human usable
configuration

©2014 IBM Corporation

runtime 
only

some combination of  
technologies 

!
app-centered

everything

What if…

grokable
config

provisioning

©2014 IBM Corporation

What if…

grokable
config

provisioning

runtime 
only

some combination of  
technologies 

!
app-centered

everything

How do we do this?

©2014 IBM Corporation

What if…
runtime 

only

some combination of  
technologies 

!
app-centeredeverything

And yet allow this?

no restarts

©2014 IBM Corporation

What if…

And for crying out loud,
can we prevent THIS?!

runtime3rd party 
bundle 

B

system 
bundle 

A

Application

X

©2014 IBM Corporation

Building a kernel from scratch
OSGi-based for all the reasons

First-class use of OSGi services

Must react to configuration changes

Runtime composition on-the-fly 
 
 

©2014 IBM Corporation

Configuration
Settled on XML for configuration format

Ubiquitous

Expressive

BUT, for simplicity:

single file

usable defaults

<server description=“simple”>
 <featureManager>
 <feature>jsp-2.2</feature>
 </featureManager>
!
 <httpEndpoint id=“defaultHttpEndpoint”  
 httpPort=“9080” httpsPort=“9443” />
</server>

©2014 IBM Corporation

Configuration
Composable system requires composable configuration:

Individual components own their config 

No centralized repository

No externally defined global config model

©2014 IBM Corporation

Configuration
Composable system requires composable configuration:

Individual components own their config 

No centralized repository

No externally defined global config model
Configuration Admin and Metatype #FTW!

©2014 IBM Corporation

Configuration Admin
We rolled our own (sorry)

Parse and merge user configuration and bundle-provided
defaults

Resolve variables

Provide configuration to consumers as required by the spec
(mostly) 
 
 
 
 
 

©2014 IBM Corporation

Metatype
Equinox impl + extensions

http://www-01.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/
rwlp_extensions_osgi_metatype.html

Uniform validation of user input

Define configuration and constraints in one place, it gets used everywhere else.

We favor metatype.xml for this reason

Custom namespace for additional types and validators

ibm:type — duration, location, password

pid/reference

unique, final, variable, etc.

http://www-01.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_extensions_osgi_metatype.html

©2014 IBM Corporation

Uniform validation of user input

Define configuration and constraints in one place, it gets used everywhere else.

We favor metatype.xml for this reason

Custom namespace for additional types and validators

ibm:type — duration, location, password

pid/reference

unique, final, variable, etc.

Metatype
Equinox impl + extensions

http://www-01.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/
rwlp_extensions_osgi_metatype.html

human readable: 
1h30m converted to unit of choice used by developer tools to help

prompt for the right kind of path:
file vs. url

http://www-01.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_extensions_osgi_metatype.html

©2014 IBM Corporation

Uniform validation of user input

Define configuration and constraints in one place, it gets used everywhere else.

We favor metatype.xml for this reason

Custom namespace for additional types and validators

ibm:type — duration, location, password

pid/reference

unique, final, variable, etc.

Metatype
Equinox impl + extensions

http://www-01.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/
rwlp_extensions_osgi_metatype.html

type=“String” 
ibm:type=“password” 

 
The value is a “SerializedProtectedString”,  

which is not a String.
  

Developer tools display encoding options: xor or aes, etc.

http://www-01.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_extensions_osgi_metatype.html

©2014 IBM Corporation

Uniform validation of user input

Define configuration and constraints in one place, it gets used everywhere else.

We favor metatype.xml for this reason

Custom namespace for additional types and validators

ibm:type — duration, location, password

pid/reference

unique, final, variable, etc.

Metatype
Equinox impl + extensions

http://www-01.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/
rwlp_extensions_osgi_metatype.html

This is some crazy stuff. 
 

ibm:type=“pid” 
 ibm:reference=“specific.service.pid”  

 
Allows nested configuration elements  

to define service relationships  
 

#awesome

http://www-01.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_extensions_osgi_metatype.html

©2014 IBM Corporation

Provisioning
Two phases of provisioning:

Bootstrap the kernel to get configuration

Add or remove features based on configuration update

Features as in Subsystem features  
(*.esa files, metadata, etc.)

Adding or removing features  
installs or uninstalls bundles, which  
adds or removes configurations, which 
triggers the creation or removal of services!

©2014 IBM Corporation

Provisioning
Two phases of provisioning:

Bootstrap the kernel to get configuration

Add or remove features based on configuration update

Features as in Subsystem features  
(*.esa files, metadata, etc.)

Adding or removing features  
installs or uninstalls bundles, which  
adds or removes configurations, which 
triggers the creation or removal of services!

Dynamically respond to
configuration changes at any time

without requiring a restart.
!

#really

©2014 IBM Corporation

Using OSGi Services…
But who in their right mind wants to manage OSGi
services themselves??

©2014 IBM Corporation

Using OSGi Services…
But who in their right mind wants to manage OSGi
services themselves??

Exactly. NOBODY.

©2014 IBM Corporation

Using OSGi Services…
But who in their right mind wants to manage OSGi
services themselves??

Exactly. NOBODY.

?

BlueprintDeclarative Services

yes, there are others.  
We focused on these two.

©2014 IBM Corporation

Declarative Services
We chose DS for two main reasons:

Timing: Blueprint and Aries were just getting started

Integration with Configuration Admin and Metatype!

Config injected as one unit

activate/modified/updated methods

Service instance creation based on metatype-declared factory pid

DS target filters can be set via configuration

©2014 IBM Corporation

DS is AWESOME!
DS is a central part of the Liberty runtime

CA + M + DS = “magic” 
We do insane things with config-derived target filters

Our runtime would not be what it is without DS in the
middle of it

BUT..

©2014 IBM Corporation

Service dynamics can hurt!
Service dynamics are a huge hurdle for “new” developers

DI and IoC can turn even experienced brains inside out if they
aren’t prepared. 
 Thankfully, they do seem to recover.

Utilities created to “help” can have unintended consequences.  
 Especially if cut and paste are involved.

There is definitely a “better way” to do things with DS..

©2014 IBM Corporation

Let DS do it. Really.
DS is excellent at managing service dynamics.

DS is excellent at managing non-trivial service dependencies

It is very unlikely that you will be able to do better— just let
DS do it. That means:

Don’t register services inside a component

Don’t manage references inside a component

©2014 IBM Corporation

Isolation
We mean this in a good way.

Liberty runtime serves two masters:

Typical Application Server paradigm 
(apps strictly separated from runtime) — API

Platform extender paradigm 
(the “app” is the runtime) — SPI

Persistent problem: 
how to allow apps or extensions to use their own versions of libraries that don't
conflict with the runtime!?

©2014 IBM Corporation

Subsystems, Resolver Hooks, and
Regions… (oh my!)

Features must explicitly declare API and SPI packages  
(IBM-* metadata in the feature manifest)

Isolation between API/SPI, apps/extensions/runtime is
enforced in a few ways:

Subsystems (the Aries impl) for OSGi Applications (API)

Resolver hooks and/or Eclipse Regions for isolation
between runtime, extensions (SPI), and containers (API).

©2014 IBM Corporation

</cleanSlate>
Of course, we didn’t really get a clean slate. 

Application compatibility had to be preserved.
!

But that still gave us a LOT of room…

©2014 IBM Corporation

Dealing with our legacy
We did start over with our kernel

Used the new base to re-group…

Lots of code still common with full profile

Wrap/Shim: New face on old code

Patch: tweak and replace bits where necessary

©2014 IBM Corporation

Thank you!

Questions?

