
Canonical Modeling for
API Interoperability
QCON NEW YORK, JUNE 2014

TED EPSTEIN, FOUNDER AND CEO

MODELSOLV, INC.

1COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Overview

• How APIs help developers, how they don’t

• Canonical models: promises and challenges

• Tackling variability in message representations

• A Better Client Library

• Demo and walkthrough

2COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Developers in the API
Jungle

3COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Services Built in isolation
• Many services built to

service a single
application or org unit.

• No data or API
governance, no shared
data models.

• No meaningful
guidelines. “Just use
schema.”

• No easy path to eventual
integration or promotion
to shared services.

4COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Heavy Burden on Developers

5COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Heavy Burden on Developers
• Find the right

service

6COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Heavy Burden on Developers
• Find the right

service

• Negotiate
data formats

7COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Heavy Burden on Developers
• Find the right

service

• Negotiate data
formats

• Point-to-point
integrations:
each one is
different

8COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Strained Ecosystem
• Bloated code

9COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Strained Ecosystem
• Bloated code

• Memory footprint

10COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Strained Ecosystem
• Bloated code

• Memory footprint

• High integration
costs

11COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Strained Ecosystem
• Bloated code

• Memory footprint

• High integration
costs

• Slow delivery

12COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Canonical Models:
Promises and
Challenges

13COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

A Modest Proposal
• Define a common model for

all data communicated
between systems.

• Common recommendation
in one form or another
◦ Patterns of Enterprise Integration

(Fowler)

◦ SOA Design Patterns (Erl)

14COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Different Uses for Canonical Data
Models:
API Design
◦ SOA Governance: Enforce

consistency with the canonical
model (“canonical schema”)

◦ Tools: Compose message formats
from canonical data models

SDK Development
◦ Abstract physical format
◦ Optimize for performance and/or

developer productivity

Integration
◦ Transform messages to/from

canonical format.
◦ Boundary translation to/from

industry standards

Analysis
◦ Analyzing data landscape, service

landscape
◦ Compliance, internal audit, MDM,

large-scale integration efforts.

15COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Why is this so hard?
Intrinsic Challenges
◦ Getting everyone to the table, getting to

agreement
◦ Versioning, Change impact analysis, and

lifecycle management

Economic Alignment Challenges
◦ Service developers need to get it done
◦ Code-first frameworks promise low-cost

to service developers

Modeling Mismatch: Viewpoint
◦ What's the purpose of the model?
◦ What level of abstraction? What level of

detail?
◦ How does it related to concrete

representations?

Modeling Mismatch: Language
and Method
◦ ER, UML, OWL, etc.
◦ The attractive nuisance of XML Schema

Result: confusion about what the
canonical model is supposed to
be.

16COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

The Pervasive Problem: Variability
• One size fits none

• Message representations vary by
◦ Level of detail

◦ Perspective

◦ Topology, Granularity

◦Contextual constraints

◦Metadata

17COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Realization: Decoupling
Models and Messages

18COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Another Look at the Variability Problem
• There’s a common theme

(canon) underneath these
variations.

• Can we describe the theme
and variations separately?

• Can we model the variations
as adaptations,
augmentations of the theme?

• There’s a name for that:
Realization.

19COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Realization: Property Subset

20COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

API requests or
responses may
only need a subset
of properties
defined in the
canonical model.

Realization model
may specify a list
of included
properties.

Realization:
Perspective

21COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Message and resource
structures project
different views from the
same logical data model

Canonical model should
support bi-directional
references.

Realization model should
allow embedded or linked
representations.

Realization:
Metadata

22COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Business Information Model

Account ID

Balance

Margin

Status

Account

Party ID

Name

Party
1

0..n

Data Aspects

· Deltas

· Data Source

· Data Security

· Explicit Null Values

...

Message Structure

<party dataSource=“MSDB”>

 <partyId>123</partyId>

 <partyName xsi:nil=“true” nullValue=“Not Available” />

 <accounts>

 <account dataSource=“A2” transType=“insert”>

 <accountId>XYZ</accountId>

 <balance xsi:nil=“true” isRestricted=“true” />

 …

 </account>

 …

 </accounts>

</party>

APIs may need to augment
essential data with descriptive
metadata.

Data aspects are cross-cutting
concerns that may be woven
together with canonical data
as part of the interface
realization.

Realization: Contextual Constraints

<=$10MM
Asset

Class =
Bond

23COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Trade
Services may have specific
constraints that are not
intrinsic to the data
definitions.

Realization model may
specify constraints on
requests or responses.
Constraints may take
different forms: range,
subtype, logical
expression, etc.

Canonical Modeling Reloaded
• New understanding of the model vs. message:

• Canonical data models describe business information at the conceptual level
◦ Semantically rich
◦ Technology independent

• Realization models afford variability, with clear limits
◦ Bend the canonical model, don’t break it
◦ Realized representations must be recognizable as instances of the canonical model.

• Some new terms:
◦ Interface Data Model: A realization model used to define data exchanged through an API.
◦ Resource Data Model: An interface data model for a RESTful (resource-oriented) API.

24COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

A Better Client Library

25COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Today’s
Client Library

26COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

How many ways from Sunday does this
suck?

1. Canonical data model gets lost in the translation.

2. Awkward structures introduced by message format.

3. Annotations are specific to a single API, message format.

4. Not usable as business objects

5. Extra code to populate these DTOs, move data between them and
internal representations.

6. High memory footprint

27COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Just say no
to DTO.

Canonical
Serializer

No DTOs, no need to
code transformations

Single object graph
serialized to multiple
RDMs, message
formats.

Canonical
classes/interfaces can
be used as business
objects.

Flexibility: pluggable
formats for canonical
model, RDM, object
graph and media type.

28COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Canonical Serializer: Implementation
What do we call a serializer that

shoots representations out of a canon?

Kaboom Serializer!
https://github.com/modelsolv/Kaboom

(Just a demo now, but feedback & contributions welcome.)

29COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Scenario
• TaxBlaster: new tax preparation app.

• Integrates with e-filing service

• Integrates with client billing service

• Common data model, different views

30COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

TaxBlaster: Canonical Data Model

31COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

filingID : string
jurisdiction : string
currency : string
year : date
period : int
grossIncome : decimal
taxLiability : decimal

TaxFiling

taxpayerID : string
lastName : string
firstName : string
otherNames : string*

Person

street 1 : string
street2: string
city : string
stateOrProvince : string
postalCode : string

Address

companyID : string
companyName : string
EIN : string
form : string
active : boolean

Company

employees

employer 0..1

0..*

taxpayer

1..1

0..*

addresses

Internal Metamodel

Pluggable
implementations:

• CDM

• RDM

• Canonical Object
Reader/Writer

• Serializer

32COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

name : string

CanonicalDataType

type : primitiveDataType

CDMPrimitiveProperty
CDMReferenceProperty

name : string
cardinality : Cardinality

CDMProperty

properties0..*

inverseProperty

targetDataType

name : string

ResourceDataModel

type : primitiveDataType

RDMPrimitiveProperty
RDMReferenceProperty

name : string
cardinality : Cardinality

RDMProperty

includedProperties0..*

linkRelation : string

ReferenceLink
ReferenceEmbed

embeddedDataModel

Recipe for a model-oriented API client
◦A canonical modeling language

◦Data available at runtime that conforms to the canonical model

◦An API description facility that
◦ Realizes the canonical model as an Interface Data Model

◦ Described as formalized variations

◦A runtime serializer/deserializer that
◦ Interprets the API model

◦ Serializes and deserializes between the the canonical object graph and the
the realized message format.

33COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Conclusion
Canonical models are a way to capture organizational agreement on
data definitions

We need the right degree of coupling between the canonical model
and API representations.

We do this by identifying the kinds of variations that we need to
support, and formalizing these in a realization mapping.

Tooling can support realization modeling and apply it in client libraries,
SDKs, middleware, etc.

Potential benefits: better interoperability, lower integration cost,
higher developer productivity.

34COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

Questions
THANK YOU!

35COPYRIGHT © 2014, MODELSOLV, INC. | ALL RIGHTS RESERVED.

