
Barry Jaspan
Senior Architect, Acquia Inc.

TestOps:
Continuous Integration 

when infrastructure
 is the product



This talk is about
the hard parts.

Rainbows and ponies
 have left the building.



Intro to Continuous Integration

○ Maintain a code repository
○ Automate the build
○ Make the build self-testing
○ Everyone commits to the baseline every day
○ Every commit (to baseline) should be built
○ Keep the build fast
○ Test in a clone of the production environment
○ Make it easy to get the latest deliverables
○ Everyone can see the results of the latest build
○ Automate deployment



● PaaS for PHP apps
○ Multiple environments: Dev, Stage, Prod, …
○ Continuous Integration environment for your app
○ Special sauce for Drupal

● Obligatory Impressive Numbers, ca. 03/2014
○ 27 billion origin hits per month
○ 422 TB data xfer/month
○ 8000+ EC2 instances

● Release every 1.6 days on average
○ Each release alters the infrastructure under 

thousands of web apps that we do not control
● Our customers REALLY hate downtime

Intro to Acquia Cloud



Server configuration is software

● Puppet, Chef, and similar tools turn server 
config into software
○ Hurray!
○ Deserves the same best practices as app 

development
● TestOps == test-related CI principles for 

infrastructure software
○ Make the build self-testing
○ Test in a clone of the production environment
○ Keep the build fast

● “If it isn’t tested, it doesn’t work.”



Unit tests vs. System tests

● Unit tests isolate individual program modules
○ Injection mocks out external systems

● Problem: You can’t mock out the real world 
and get accurate results
○ Server configuration interacts with the OS, network, 

and services
○ “puppetd –noop” doesn’t tell the whole story

● Sample failure
○ crontab and cron daemon race condition



Unit tests vs. System tests

● System tests are end-to-end
○ Apply code changes to real, running servers
○ Exercise the infrastructure as the app(s) will

● Problem: Reality is very messy!
○ Launch failures
○ Race conditions
○ Vendor API scheduled maintenance
○ Cosmic rays



System tests FTW

● For infrastructure, system tests are essential

● Making Acquia Cloud’s system tests reliable 
is the hardest engineering challenge I’ve 
ever faced.

● We would be totally dead without them.



Test in a clone of production

● No back-doors to make tests “easier”
● Ex: HIPPA, PCI, etc. security requirements

○ Access only from a bastion server using two-factor 
authentication

○ No root logins, even from the bastion
○ Any failure here locks Ops out from all servers!

● Tests operate just as admins do
○ Most tests operate “from a bastion”:

ssh testadmin@server ‘sudo bash -c “cmd”’
○ Ensures the code works in production



● Always build from a reference base
○ e.g. “Ubuntu 12.04 Server 64-bit”
○ No incrementally evolved images
○ Puppet makes this natural
○ Sidebar: Docker gets this totally wrong!

● Puppet can take a while
○ Makes tests and MTTR slow

● More on this later…

Server build strategy



● Launch VMs, run puppet
○ Replicate a functional production environment
○ Isolated from production

● Scan syslog for errors
● Test config files, daemons, users, cron 

jobs…
● Sample failure

○ Incorrect Puppet dependencies work while iterating 
on development instances but not on clean launch

Basic build tests



Functionally test the moving parts

● Backup and restore
● Message queues
● Worker auto-scaling
● Load balancing with up and down workers
● ELB health check and recovery
● Database failover
● Monitoring & Alerting
● Self healing



● Install and verify application(s)
○ Real site code
○ Real site db (scrubbed)

● Cause app to exercise the infrastructure
○ Write to database, message queues, etc.
○ Verify success on the back end

● Operate app on degraded infrastructure
○ Failed web nodes
○ Database failover

Application test



● Reboot all test servers
● Re-run build tests

○ Filesystems mounted?
○ Services restarted?

● Re-run functional and application tests
● Sample failure

○ Database quota daemon starts via /etc/init.d before 
MySQL daemon, then aborts

Reboot test



● Relaunch all test servers from base image
○ Simulates server crash and recovery
○ Persistent data retained?
○ Server rejoins services? (e.g. MySQL replication 

restarts)
○ Unexpected issues, ex: tmpfs

● Re-run build, functional, and application 
tests

● Sample failure
○ Non-deployable customer application prevents 

relaunch from completing normally

Relaunch test



Upgrade test

● So far we've talked about new servers
○ Use case: Your service is growing.

● Also need to test upgrading existing servers
○ Use case: You add a feature.

● The Upgrade Test Dance
○ Launch servers in test environment on current 

production code
○ Run smoke tests to ensure system is operating
○ Upgrade servers to latest development code

■ Requires a fully automated upgrade process
○ Run build, functional, and application tests from 

development code



Upgrade release process

● Puppet cannot orchestrate all upgrades
○ Rolling upgrade across HA clusters
○ Server type upgrade order requirements
○ Post-release tasks

■ ex: Uninstall package X once all servers are 
upgraded

○ Devs document release procedure with the commit
○ Different devs run the release on an internal-use 

installation
● Sample failure

○ nginx failed to restart after version upgrade because 
prod server has more domain names than test



Server builds: continuous imaging

● Remember: Always launch from a reference 
image. No evolved images!

● Building servers from scratch can be slow
● Automate pre-built images from 

development branch
○ Speeds intra-day tests, reduces MTTR in prod

● You will hit unexpected bumps in the road
● Sample failure

○ MySQL server, EBS, and init.d



Continuous Imaging image tests

● Create development images nightly
● Create per-branch images at release
● Run system tests on both base and pre-built 

images
● Test upgrade from per-branch to 

development pre-built images



Testing in parallel

● Infrastructure system tests are slow
● Run them in parallel

○ Workers may alter server-wide behavior (e.g. kill 
Apache)

○ Each worker needs an isolated set of servers
○ Workers that break their servers need to self 

destruct, or they will cause false failures
● Optimize running time

○ Add more workers
○ Reduce setup time
○ Run the slower tests first



Management issues



Who writes the tests?

● Our tests are as, or more, complex than the 
product
○ Tests often take longer to write

● Subtle cases require white-box testing
○ Triggering specific failure scenarios requires 

understanding OS and code details together
● First try: QA department

○ Did not work, they could not keep up or go deep
● Now: Engineering

○ Every dev writes unit and system tests for their own 
code



Who fixes the tests?

● Infrastructure system tests are fragile
○ The damn things break for every little bug!
○ … and every race condition imaginable
○ … and every cosmic ray

● Code reviews require a “passing” run
○ Author must analyze any failures, confirm they are 

unrelated, and refer to or open a ticket for it
● Bugs often only occur post-commit
● Permanent, rotating team handles failures 

○ Authority to revert any commit causing a failure
○ Usually it is easier to fix it instead



Who invests in the tests?

● Management must accept that infrastructure 
system tests are
○ hard
○ time-consuming
○ essential
○ worth it

● Under-investing will bite you badly
○ “If it isn’t tested, it doesn’t work.”
○ It will fail, at the worst possible time



Questions?

● Barry Jaspan, barry.jaspan@acquia.com

● Please evaluate this session!

● Acquia is hiring!
○ Boston, New York, Portland
○ Europe! Australia!!!
○ wherever you are


