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This talk is about
the hard parts.

Rainbows and ponies
have left the building.



Intro to Continuous Integration

O 0O O 0O O O O O O O

Maintain a code repository

Automate the build

Make the build self-testing

Everyone commits to the baseline every day
Every commit (to baseline) should be built
Keep the build fast

Test in a clone of the production environment
Make it easy to get the latest deliverables
Everyone can see the results of the latest build
Automate deployment



Intro to Acquia Cloud

e PaaS for PHP apps
o Multiple environments: Dev, Stage, Prod, ...
o Continuous Integration environment for your app
o Special sauce for Drupal
e Obligatory Impressive Numbers, ca. 03/2014

o 27 billion origin hits per month
o 422 TB data xfer/month
o 8000+ EC2 instances

e Release every 1.6 days on average

o Each release alters the infrastructure under
thousands of web apps that we do not control

e Our customers REALLY hate downtime



Server configuration is software

e Puppet, Chef, and similar tools turn server
config into software
o Hurray!

o Deserves the same best practices as app
development

e TestOps == test-related CI principles for

Infrastructure software

o Make the build self-testing
o Testin a clone of the production environment
o Keep the build fast

e “Ifitisn’t tested, it doesn’t work.”



Unit tests vs. System tests

e Unit tests isolate individual program modules
o Injection mocks out external systems

e Problem: You can’t mock out the real world
and get accurate results

o Server configuration interacts with the OS, network,
and services
o “puppetd —noop” doesn't tell the whole story
e Sample failure
o crontab and cron daemon race condition



Unit tests vs. System tests

e System tests are end-to-end
o Apply code changes to real, running servers
o Exercise the infrastructure as the app(s) will

e Problem: Reality is very messy!
o Launch failures
o Race conditions
o Vendor API scheduled maintenance
o Cosmic rays



System tests FTW

e Forinfrastructure, system tests are essential

e Making Acquia Cloud’s system tests reliable
IS the hardest engineering challenge I've
ever faced.

e \We would be totally dead without them.



Test in a clone of production

e No back-doors to make tests “easier’
e EXx: HIPPA, PCI, etc. security requirements

o Access only from a bastion server using two-factor
authentication

o No root logins, even from the bastion
o Any failure here locks Ops out from all servers!

e Tests operate just as admins do

o Most tests operate “from a bastion™:

ssh testadmin@server ‘sudo bash -c¢ “cmd™
o Ensures the code works in production



Server build strategy

e Always build from a reference base
o e.g. ‘Ubuntu 12.04 Server 64-bit”
o No incrementally evolved images
o Puppet makes this natural
o Sidebar: Docker gets this totally wrong!

e Puppet can take a while
o Makes tests and MTTR slow

e More on this later...



Basic build tests

e Launch VMs, run puppet
o Replicate a functional production environment
o |solated from production

e Scan syslog for errors

e Test config files, daemons, users, cron
jobs...

e Sample failure

o |Incorrect Puppet dependencies work while iterating
on development instances but not on clean launch



Functionally test the moving parts

Backup and restore

Message queues

Worker auto-scaling

Load balancing with up and down workers
ELB health check and recovery

Database failover

Monitoring & Alerting

Self healing



Application test

e [nstall and verify application(s)

o Real site code
o Real site db (scrubbed)

e Cause app to exercise the infrastructure
o Write to database, message queues, efc.
o Verify success on the back end

e Operate app on degraded infrastructure

o Failed web nodes
o Database failover



Reboot test

Reboot all test servers

e Re-run build tests
o Filesystems mounted?
o Services restarted?

e Re-run functional and application tests
e Sample failure

o Database quota daemon starts via /etc/init.d before
MySQL daemon, then aborts



Relaunch test

e Relaunch all test servers from base image

o Simulates server crash and recovery
o Persistent data retained?

o Server rejoins services? (e.g. MySQL replication
restarts)
o Unexpected issues, ex: tmpfs

e Re-run build, functional, and application
tests
e Sample failure

o Non-deployable customer application prevents
relaunch from completing normally



Upgrade test

e 5o far we've talked about new servers
o Use case: Your service is growing.

e Also need to test upgrading existing servers
o Use case: You add a feature.

e The Upgrade Test Dance

o Launch servers in test environment on current
production code
o Run smoke tests to ensure system is operating
o Upgrade servers to latest development code
m Requires a fully automated upgrade process

o Run build, functional, and application tests from
development code



Upgrade release process

e Puppet cannot orchestrate all upgrades
o Rolling upgrade across HA clusters
o Server type upgrade order requirements
o Post-release tasks

m eX: Uninstall package X once all servers are
upgraded

O Devs document release procedure with the commit

o Different devs run the release on an internal-use
installation
e Sample failure

o nginx failed to restart after version upgrade because
prod server has more domain names than test



Server builds: continuous imaging

Remember: Always launch from a reference
Image. No evolved images!

Building servers from scratch can be slow
Automate pre-built images from

development branch
o Speeds intra-day tests, reduces MTTR in prod
You will hit unexpected bumps in the road

Sample failure
o MySQL server, EBS, and init.d



Continuous Imaging image tests

e Create development images nightly

e Create per-branch images at release

e Run system tests on both base and pre-built
Images

e Test upgrade from per-branch to
development pre-built images



Testing in parallel

e Infrastructure system tests are slow
e Run them in parallel

o Workers may alter server-wide behavior (e.g. Kill
Apache)
o Each worker needs an isolated set of servers
o Workers that break their servers need to self
destruct, or they will cause false failures
e Optimize running time
o Add more workers

o Reduce setup time
o Run the slower tests first



Management issues



Who writes the tests?

e Our tests are as, or more, complex than the

product
o Tests often take longer to write

e Subtle cases require white-box testing
o Triggering specific failure scenarios requires
understanding OS and code details together

e First try: QA department

o Did not work, they could not keep up or go deep
e Now: Engineering

o Every dev writes unit and system tests for their own
code



Who fixes the tests?

e Infrastructure system tests are fragile
o The damn things break for every little bug!

o ... and every race condition imaginable
o ... and every cosmic ray

e Code reviews require a “passing” run

o Author must analyze any failures, confirm they are
unrelated, and refer to or open a ticket for it

e Bugs often only occur post-commit

e Permanent, rotating team handles failures

o Authority to revert any commit causing a failure
o Usually it is easier to fix it instead



Who invests in the tests?

e Management must accept that infrastructure

system tests are
o hard

o time-consuming
o essential

o worth it

e Under-investing will bite you badly
o “Ifitisn’t tested, it doesn’'t work.”
o It will fail, at the worst possible time



Questions?

e Barry Jaspan, barry.jaspan@acquia.com
e Please evaluate this session!

e Acquia is hiring!
o Boston, New York, Portland
o Europe! Australia!!!
o wherever you are



