TestOps:
Continuous Integration
when infrastructure
Is the product

Barry Jaspan
Senior Architect, Acquia Inc.



This talk is about
the hard parts.

Rainbows and ponies
have left the building.



Intro to Continuous Integration

O 0O O 0O O O O O O O

Maintain a code repository

Automate the build

Make the build self-testing

Everyone commits to the baseline every day
Every commit (to baseline) should be built
Keep the build fast

Test in a clone of the production environment
Make it easy to get the latest deliverables
Everyone can see the results of the latest build
Automate deployment



Intro to Acquia Cloud

e PaaS for PHP apps
o Multiple environments: Dev, Stage, Prod, ...
o Continuous Integration environment for your app
o Special sauce for Drupal
e Obligatory Impressive Numbers, ca. 03/2014

o 27 billion origin hits per month
o 422 TB data xfer/month
o 8000+ EC2 instances

e Release every 1.6 days on average

o Each release alters the infrastructure under
thousands of web apps that we do not control

e Our customers REALLY hate downtime



Server configuration is software

e Puppet, Chef, and similar tools turn server
config into software
o Hurray!

o Deserves the same best practices as app
development

e TestOps == test-related CI principles for

Infrastructure software

o Make the build self-testing
o Testin a clone of the production environment
o Keep the build fast

e “Ifitisn’t tested, it doesn’t work.”



Unit tests vs. System tests

e Unit tests isolate individual program modules
o Injection mocks out external systems

e Problem: You can’t mock out the real world
and get accurate results

o Server configuration interacts with the OS, network,
and services
o “puppetd —noop” doesn't tell the whole story
e Sample failure
o crontab and cron daemon race condition



Unit tests vs. System tests

e System tests are end-to-end
o Apply code changes to real, running servers
o Exercise the infrastructure as the app(s) will

e Problem: Reality is very messy!
o Launch failures
o Race conditions
o Vendor API scheduled maintenance
o Cosmic rays



System tests FTW

e Forinfrastructure, system tests are essential

e Making Acquia Cloud’s system tests reliable
IS the hardest engineering challenge I've
ever faced.

e \We would be totally dead without them.



Test in a clone of production

e No back-doors to make tests “easier’
e EXx: HIPPA, PCI, etc. security requirements

o Access only from a bastion server using two-factor
authentication

o No root logins, even from the bastion
o Any failure here locks Ops out from all servers!

e Tests operate just as admins do

o Most tests operate “from a bastion™:

ssh testadmin@server ‘sudo bash -c¢ “cmd™
o Ensures the code works in production



Server build strategy

e Always build from a reference base
o e.g. ‘Ubuntu 12.04 Server 64-bit”
o No incrementally evolved images
o Puppet makes this natural
o Sidebar: Docker gets this totally wrong!

e Puppet can take a while
o Makes tests and MTTR slow

e More on this later...



Basic build tests

e Launch VMs, run puppet
o Replicate a functional production environment
o |solated from production

e Scan syslog for errors

e Test config files, daemons, users, cron
jobs...

e Sample failure

o |Incorrect Puppet dependencies work while iterating
on development instances but not on clean launch



Functionally test the moving parts

Backup and restore

Message queues

Worker auto-scaling

Load balancing with up and down workers
ELB health check and recovery

Database failover

Monitoring & Alerting

Self healing



Application test

e [nstall and verify application(s)

o Real site code
o Real site db (scrubbed)

e Cause app to exercise the infrastructure
o Write to database, message queues, efc.
o Verify success on the back end

e Operate app on degraded infrastructure

o Failed web nodes
o Database failover



Reboot test

Reboot all test servers

e Re-run build tests
o Filesystems mounted?
o Services restarted?

e Re-run functional and application tests
e Sample failure

o Database quota daemon starts via /etc/init.d before
MySQL daemon, then aborts



Relaunch test

e Relaunch all test servers from base image

o Simulates server crash and recovery
o Persistent data retained?

o Server rejoins services? (e.g. MySQL replication
restarts)
o Unexpected issues, ex: tmpfs

e Re-run build, functional, and application
tests
e Sample failure

o Non-deployable customer application prevents
relaunch from completing normally



Upgrade test

e 5o far we've talked about new servers
o Use case: Your service is growing.

e Also need to test upgrading existing servers
o Use case: You add a feature.

e The Upgrade Test Dance

o Launch servers in test environment on current
production code
o Run smoke tests to ensure system is operating
o Upgrade servers to latest development code
m Requires a fully automated upgrade process

o Run build, functional, and application tests from
development code



Upgrade release process

e Puppet cannot orchestrate all upgrades
o Rolling upgrade across HA clusters
o Server type upgrade order requirements
o Post-release tasks

m eX: Uninstall package X once all servers are
upgraded

O Devs document release procedure with the commit

o Different devs run the release on an internal-use
installation
e Sample failure

o nginx failed to restart after version upgrade because
prod server has more domain names than test



Server builds: continuous imaging

Remember: Always launch from a reference
Image. No evolved images!

Building servers from scratch can be slow
Automate pre-built images from

development branch
o Speeds intra-day tests, reduces MTTR in prod
You will hit unexpected bumps in the road

Sample failure
o MySQL server, EBS, and init.d



Continuous Imaging image tests

e Create development images nightly

e Create per-branch images at release

e Run system tests on both base and pre-built
Images

e Test upgrade from per-branch to
development pre-built images



Testing in parallel

e Infrastructure system tests are slow
e Run them in parallel

o Workers may alter server-wide behavior (e.g. Kill
Apache)
o Each worker needs an isolated set of servers
o Workers that break their servers need to self
destruct, or they will cause false failures
e Optimize running time
o Add more workers

o Reduce setup time
o Run the slower tests first



Management issues



Who writes the tests?

e Our tests are as, or more, complex than the

product
o Tests often take longer to write

e Subtle cases require white-box testing
o Triggering specific failure scenarios requires
understanding OS and code details together

e First try: QA department

o Did not work, they could not keep up or go deep
e Now: Engineering

o Every dev writes unit and system tests for their own
code



Who fixes the tests?

e Infrastructure system tests are fragile
o The damn things break for every little bug!

o ... and every race condition imaginable
o ... and every cosmic ray

e Code reviews require a “passing” run

o Author must analyze any failures, confirm they are
unrelated, and refer to or open a ticket for it

e Bugs often only occur post-commit

e Permanent, rotating team handles failures

o Authority to revert any commit causing a failure
o Usually it is easier to fix it instead



Who invests in the tests?

e Management must accept that infrastructure

system tests are
o hard

o time-consuming
o essential

o worth it

e Under-investing will bite you badly
o “Ifitisn’t tested, it doesn’'t work.”
o It will fail, at the worst possible time



Questions?

e Barry Jaspan, barry.jaspan@acquia.com
e Please evaluate this session!

e Acquia is hiring!
o Boston, New York, Portland
o Europe! Australia!!!
o wherever you are



