

Powering Dynamic M2M Event Processing with OSGi

Dynamic Complex Event Processing and OSGi

6/12/2014

Hitachi Communication Technologies America, Inc. Walt Bowers
Chief Architect OSGi Solutions

Human Dreams. Make IT Real.

Powering Dynamic M2M Event Processing with OSGi Dynamic Complex Event Processing and OSGi.

Contents

- 1. The Vs of Big Data
- 2. Complex Event Processing
- 3. Dynamic Complex Event Processing
- 4. Demo

Powering Dynamic M2M Event Processing with OSGi

Dynamic Complex Event Processing and OSGi.

1. The Vs of Big Data

The Vs of Big Data

The missing "V" of Big Data

Extracting VALUE from VIABLE Data WHERE It Matters and WHEN It Matters

Rise of The Intelligent Device

Key Elements of Connected Intelligence

Intelligent Devices

Always-on devices
connected to variety
of sensors and
running multiple
software
applications

2

Real-Time Analytics

High-frequency data analysis for instant decision making and automation of information flows 3

Big Data

Integration of data from connected devices with enterprise applications and historical data

Dynamic Predictive Analytics

- Local analytics and business rules are controlled by global analytics
 - In-flight data analytics on the device
 - Near real time response on the device
- Global Analytics for the Big Patterns
 - Big Data post processing
 - Discover Hidden Patterns/dependencies
- Dynamically Adjust the Rules
 - Update new rules to the local device
 - Enhances the devices local analytics
- Rinse and Repeat

Transportation Example

Powering Dynamic M2M Event Processing with OSGi

Dynamic Complex Event Processing and OSGi.

2. Complex Event Processing

Intelligence Is Real-Time, Event-Based Analytics

Complex Events Processing enables real-time business insights from edge devices

Communication Events Machine Events

Security Events Environmental Events Business Logic **Events**

Complex Event Processing (CEP)

- Event-driven Architecture
- A generic data management infrastructure for processing in-flight data before data is potentially stored to deliver results in near real-time
- Programming language for defining rules
- It allows users to Aggregate/Correlate/Enrich/Detect Patterns in high speed streaming data

Complex Event Processing (CEP)

- Events generated at sources
- Adaptor captures event and sends it into the Event Processing Network

Event Processing

- Events processed in flight
- Merging multiple event sources and types
- Data enrichment by accessing external data sources (e.g. databases)

Event Dispatch

- Processing produces events
- Adaptor receives event and sends it into the downstream clients

Powering Dynamic M2M Event Processing with OSGi

Dynamic Complex Event Processing and OSGi.

3. Dynamic Complex Event Processing

Dynamic Environment

- Devices do not operate in a static environment
- Inputs change
- Knowledge is gained from analytics
- Additional systems want to receive the output

Dynamic Behavior

- Our Complex Event Processing engine needs to be dynamic
- Ability to change behavior without stopping the flow
- Allow a higher level system to change the processing rules

Enter OSGi

- Dynamic Modular System for Java
- Mature Lightweight Application Framework
 - Ideal for embedded environments
- Supports Module Lifecycle
 - Install/start/stop/uninstall/upgrade
 - Remotely manageable
 - Versioning
- Services Model
 - Advertise and discover services
 - Modules are dependent on service not implementation

OSGi Deployment Environment

OSGi Management System & Repository

Deployed System. Happily processing...

OSGi Management System & Repository

The Data Inputs Change

Update the adaptor

OSGi Management System & Repository

Process the Events Differently

OSGi Management System & Repository

Forward to additional locations for processing

OSGi Management System & Repository

Happily processing again...

OSGi Management System & Repository

Powering Dynamic M2M Event Processing with OSGi

How OSGi and Java enables smart data on M2M aggregators and gateways.

4. Demo

Example: JavaOne IoT In Motion

The Components

The Components

- OSGi based
- Continuous Query Language (CQL) for defining rules
- http://www.oracle.com/us/technologies/java/embedded/eventprocessing/overview/index.html?ssSourceSiteId=opn

- Arm Based Linux platform
- http://www.raspberrypi.org/

- USB hardware devices
- Open and inexpensive
- http://www.phidgets.com/

Hitachi's OSGi Framework

Dynamic Behavior In Action

Start reporting temperature changes below ambient temperature

```
192.168.1.3 - PuTTY
Attention!!!! Temp Changing:
Ambient Temp:23.8125
 Probe Temp: 12.1953
       LCD:line 0 [Amb Temp:23.7813 C]
       LCD:line 1 [Therm Temp:8.5368 C]
Attention!!!! Temp Changing:
 Ambient Temp:23.7813
 Probe Temp:8.5368
       LCD:line 0 [Amb Temp:23.7813 C]
        LCD:line 1 [Therm Temp:5.6788 C]
Attention!!!! Temp Changing:
 Ambient Temp:23.7813
 Probe Temp: 5.6788
```

Dynamic Behavior In Action

Change the rules and redeploy remotely

Dynamic Behavior In Action

Now reporting temperature changes above ambient temperature

```
192.168.1.3 - PuTTY
Attention!!!! Temp Changing:
 Ambient Temp:23.8594
 Probe Temp: 25.7484
        LCD:line 0 [Amb Temp:23.8672 C]
        LCD:line 1 [Therm Temp:26.3546 C]
Attention!!!! Temp Changing:
 Ambient Temp:23.8672
 Probe Temp: 26.3546
        LCD:line 0 [Amb Temp:23.8672 C]
        LCD:line 1 [Therm Temp:25.8299 C]
Attention!!!! Temp Changing:
 Ambient Temp:23.8672
 Probe Temp: 25.8299
```


END

Powering Dynamic M2M Event Processing with OSGi

Dynamic Complex Event Processing and OSGi.

6/12/2014

Hitachi Communication Technologies America, Inc.

Walt Bowers
Chief Architect C

Chief Architect OSGi Solutions

Walt.bowers@hitachi-cta.com

Human Dreams. Make IT Real.

HITACHI Inspire the Next

Appendix

2012

3 006 477 107 200 GB added to the "digital universe" ~30% of it generated by machines

2020

42 949 673 000 000 GB – 15 x increase 42 % will be generated by devices

According to IDC's "Digital Universe in 2020" study published in December 2012

Variety

Web and Social Media Clickstream Data Twitter Feeds Facebook Postings Web Content Machine-to-Machine • Smart Meters Readings RFID Readings •Oil Rig Sensors • GP Signals **Big Transaction Data** • Healthcare Claims • Telecommunication Call Details Record • Utility Billing Records **Biometrics** • Facial Recognition Genetics **Human Generated** • Call Center Voice Recording • Email • Electronic Medical Records

