
ALL YOUR API

ARE BELONG TO US

QCon New York 2014Everything as a servicePaul Hill

Architect @ KIXEYE
Platform Team

APIs to power Social Gaming

@paulwilliamhill

Paul Hill

An Adventure!
starring

The Good
The Bad

&
The Ugly

hypermedia API supporting thousands of requests per second, taking full advantage of the benefits of an asynchronous
architecture (Node.js), bi-directional persistent communication channels (websockets), and the performance and flexibility of
a document data store (MongoDB) while retaining standards based data validation (JSON-Schema v4), transactional control
and error handling (Promises), dynamic documentation (Swagger), efficient caching (Memcached & Varnish), and ease of

maintenance (Hypermedia ReST).

Building a respectable API under fire

The Enrichment Center regrets to inform you
that this next test is impossible.

Make no attempt to solve it.

The Goal

★ Social graph search
★ Chat
★ Identity (incl. game aliases)
★ Player profiles
★ Friends and following
★ Leaderboards
★ Messaging
★ Avatars
★ Live marketing channel
★ Online presence
★ Player search
★ User account management
★ Real-time player game stats
★ Community management (incl. bans)
★ Groups & Alliances

★ Authentication
○ OAuth2
○ Facebook Connect
○ Google Auth

★ Game launch canvas
★ Geo-location
★ Name validation
★ Email validation
★ Closed beta invite control
★ Newsfeed
★ Gifting
★ Forums
★ Payments

https://api.kixeye.com/api/v2/docs/

https://api.kixeye.com/api/v2/docs/
https://api.kixeye.com/api/v2/docs/

Fear not! I will inspire you all by charging
blindly on!

Tail Winds

★ Small team of Rockstar Developers
★ Positive culture + optimism
★ Given a goal, not direction
★ Known traffic patterns

○ ~30MM active players
○ ~120k CCU playing games
○ ~10k - 30k CCU active on web

property
★ User experience trumps consistency
★ Time to market trumps cost
★ Over provisioning

The right man in the wrong place can make all
the difference in the world.

The Good
★ ReST
★ JSON Schema v4

○ Validation
○ zSchema

★ Swagger
○ Live interactive docs

★ Mongo
○ easy JSON storage

★ Promises
○ Error handling guarantees
○ Bluebird

★ Elasticsearch
○ use strict schema
○ ngrams
○ DisMax

★ Measure all the things!
○ Graphite & StatsD
○ ready fire fire fire...

★ Websockets
○ SockJS

★ Easy to grok, fork and patch repos in github
★ CLS (continuation local storage)

○ performance plus
○ encourages reusable functions

★ Automated unit testing by response code
★ 3 tiers (Transport, Logic, Persistence)
★ URI based caching

○ Varnish
○ Memcached
○ focus on problem #1

War, war never changes.

The Bad

★ Compressed timelines
★ Dynamic requirements
★ Mongo

○ unique constraints limited on
sharded collections

○ access pattern outgrew DDS
○ storing relationships
○ write scaling
○ background indexing

★ Load balancing socket.io
★ Performance of overhead of Q

★ V8
○ gc
○ Poor live profiling tooling

★ Excessive calls from builds to GitHub
★ npm

○ flakey, requires a mirror
★ CLS

○ requires a lot of shims or
context is lost

★ Jasmine
○ fails and just keeps on going
○ beware the async setup collision

I am the vanguard of your destruction.

The Ugly

★ Natural key based load balancing
(The Aggregator)

★ Back pressure
★ Memory leaks

○ Thrift JS - oneway void - Flume
○ Default error handling in libs
○ Q long stack traces

★ Insane default configuration in libs

★ Supernodes
○ $in

★ Reactive cascade failure
○ Default retry
○ true exponential back off with

no cap
○ Node Zookeeper heartbeat

timeout
○ gc behaviour under stress
○ load rebalancing

Join Us

kixeye.com/jobs

