
© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Title Text

John Davies | CTO	

!
@jtdavies	

!
QCon New York | 12th June 2014

Turn your XML into Binary
!

Make it smaller and faster

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Computing power

• Apollo 11’s guidance computer had just 2k of 
memory and 32k of read-only storage 
But it got it to the moon - and back!	

• Most of the time :-)	

!
!

• Today you can compress a full 1080p movie into 
about 1GB and watch it on your mobile phone	

• 1080p is 2 million pixels, with full  

colour that’s 6MB per image, at 25 
images a second that’s about 15GB 
for a 100 minute film	

!
!

• Why then do we have problems getting XML into memory?

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

RS-232

• Anyone remember serial interfaces?	

!

• You had to know the settings before it worked	

• Speed, stop bits and start bits	

!
!
!
!

!

• Everything was 8 bits in fact most text was 7 bits and the top bit
was parity, on the other hand parity was also another option	

!

• Them were days!

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Size mattered!

• It was less than 20 years ago when the  
World Wide Web started	

• Every image had to be compressed	

!

• The art of programming was 
knowing how to read and write  
data into and out of binary	

!

• Every programmer was familiar with bit-wise operators	

• << & ^ | ~ >>	

• We could all calculate in two’s complement	

• We all knew Log10 2 off by heart	

!

• Real programmers don’t eat quiche!

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

The quiche eaters

• With Assembler, C and C++ we had to allocate the memory we
used and free it when we’d finished	

• If we wrote the constructor then we knew exactly how much memory we

were using - down to the byte	

!

• With Java, VB, C# and other “quiche eater” languages everything is
taken care of with memory management and garbage collection	

• We become very lazy, with machines getting faster and more memory to

tend we forget about writing efficient code	

!

• Take a complex derivative in XML, bind it to Java, stick it into a
cache, distribute the cache, job done!	

• Volumes have got the better of us though

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Last year…

• Last year a similar talk on “In-Memory Message & Trade
Repositories”

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Back to last year’s slides…

• An FX Swap	

• 14 Level of hierarchy	

• Over 3,000 elements	

!

• To the right is the fill message zoomed out	

• Below is the part in the box zoomed in a little...

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Nasty XML

• The schema describes the worst-
case but many of the simpler
“contracts” (XML instances) are
vastly simpler	

!

• The FX swap on the right is
pretty much all of the
information needed to describe
the contract	

• There are no options in this example

 <trade>!
 <tradeHeader>!
 ...!
 <tradeDate>2002-01-23</tradeDate>!
 </tradeHeader>!
 <fxSwap>!
 <productType>FxSwap</productType>!
 <nearLeg>!
 <exchangedCurrency1>!
 ...!
 <paymentAmount>!
 <currency>GBP</currency>!
 <amount>10000000</amount>!
 </paymentAmount>!
 </exchangedCurrency1>!
 <exchangedCurrency2>!
 ...!
 <paymentAmount>!
 <currency>USD</currency>!
 <amount>14800000</amount>!
 </paymentAmount>!
 </exchangedCurrency2>!
 <valueDate>2002-01-25</valueDate>!
 <exchangeRate>!
 ...!
 <rate>1.48</rate>!
 </exchangeRate>!
 </nearLeg>!
 <farLeg>!
 ...!
 </farLeg>!
 </fxSwap>!
 </trade>

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

ORM - OMG!

• It’s not just memory that has issues with size and complexity

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Chuck it into memory

• Either people have been listening to me or I’ve just been talking
about what everyone’s doing	

• I like to think it’s partly the former because I tend to talk about things

BEFORE they happen, not afterward otherwise you wouldn’t be interested	

!

• The problem with putting things into memory is cost	

!

• It works really fast and most people tend to think it’s as fast as
you’re going to get so just pay the money	

!

• One client has 400 nodes with over 15TB of in-memory data	

• That’s VERY expensive to run, several $million per year!

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Let’s take a step back

• Take a look at this XML, the bits in
red are data, the rest is meta-data	

• The structure is also part of the metadata	

!

• The actual information here is
relatively small	

!

• Pre-XML in the 90s we’d have stored
this in a much more efficient way	

!

• But without XML Schema we didn’t
have the standards we have toady

 <trade>!
 <tradeHeader>!
 ...!
 <tradeDate>2002-01-23</tradeDate>!
 </tradeHeader>!
 <fxSwap>!
 <productType>FxSwap</productType>!
 <nearLeg>!
 <exchangedCurrency1>!
 ...!
 <paymentAmount>!
 <currency>GBP</currency>!
 <amount>10000000</amount>!
 </paymentAmount>!
 </exchangedCurrency1>!
 <exchangedCurrency2>!
 ...!
 <paymentAmount>!
 <currency>USD</currency>!
 <amount>14800000</amount>!
 </paymentAmount>!
 </exchangedCurrency2>!
 <valueDate>2002-01-25</valueDate>!
 <exchangeRate>!
 ...!
 <rate>1.48</rate>!
 </exchangeRate>!
 </nearLeg>!
 <farLeg>!
 ...!
 </farLeg>!
 </fxSwap>!
 </trade>

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Java Binding

• XML is really fast when bound to Java but it’s often even
more bloated… 
<Row>  
 <Name>Tim Cook</Name> 
 <CardNumber>4924-7264-1264-8532</CardNumber> 
 <ExpiryDate>04/09</ExpiryDate> 
 <Amount>12250</Amount> 
 <Currency>USD</Currency> 
 <TransactionDate>2006-09-16</TransactionDate> 
 <Commission>1.3</Commission> 
 <VendorID>67434435</VendorID> 
 <Country>US</Country> 
</Row>

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Complex Objects

• Every Java String is minimum 48 bytes in size, whether you’re
on the heap or not objects get fragmented in memory

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Binary models

• Many of the network-critical standards like telcos and older
standards are defined in binary	

!

• The following is an extract from a binary standard called RADIUS
used by Telcos	

• They use bit-fields to indicate the presence of data (or not)

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

The RADIUS Model

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Binary XML?

• What we got was an incredibly small derivative message based on
FpML	

!

• Rather than being the implementation it was simply our end-goal	

• If we could get the XML version down to this size we’d achieved our goal	

!

• Debugging this stuff was like stepping back to the 80s	

jd-server:Radius TestData jdavies$ hexdump -C radius.dat
00000000 01 02 00 74 ea d5 7c 62 1f d0 f6 fe a3 bf 36 4c |...t..|b......6L|

00000010 35 25 e5 8c 1a 17 00 00 28 af 01 11 32 33 34 34 |5%......(...2344|

00000020 35 37 30 36 32 37 38 38 35 33 36 01 11 32 33 34 |57062788536..234|

00000030 31 35 39 30 36 32 35 38 38 35 33 36 1f 11 33 35 |159062588536..35|

00000040 33 34 32 31 30 32 30 39 34 35 35 36 38 5e 0e 34 |3421020945568^.4|

00000050 34 37 30 30 34 31 38 38 36 37 33 1a 0d 00 00 28 |47004188673....(|

00000060 4e 97 57 a8 |N.W.|

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Old + Modern

• Now we could combine binary and Spring and run it on Java 8 😃  
 
 
<filter input-channel="filter-message-channel"
output-channel="process-message-channel"
ref=”payload” method=”isAbcSet"/>  
 
 
<filter input-channel="filter-message-channel"
output-channel="process-message-channel"
expression="payload.versionId == 5"/>

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Lazy getters

!

• Going back to our classic bound Java object 
the getters simply returned the object	

!
!

• getNumberOfElements() { return numberOfElements; }	

!

• Now we have to find the value in the byte[] and return the
calculated value	

!
!
!

• Performance is about the same but we only use about 1/25th of
the memory

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

SDOs	

• SDOs or Simple Data Objects are basically Java Binding into a
compact binary codec - From any XML format to binary	

!

• We analyse the data model (or XML schema) not just the
instance data so can do things like…	

• Reducing the 7 days of the week to just 3 bits	

• Commonly used Strings become lookups into a static table (1 or 2 bytes)	

• Currencies for example only need 1 byte	

• Date/Time with timezone can be stored in 6 bytes	

!

• Bit-fields are compacted resulting in excellent compaction-ratios	

• Getters calculate the offset on the fly, mask and shift the data and return it	

!

• There is NO change to the getter API between standard binding
and SDOs

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Standard Java Binding

 <resetFrequency>  
 <periodMultiplier>6</periodMultiplier>  
 <period>M</period>  
 </resetFrequency>	

!

• JAXB, JIBX, Castor and standard C24 generate something like …	

!

 public class ResetFrequency {
 private BigInteger periodMultiplier; // Positive Integer
 private Object period; // Enum of D, W, M, Q, Y

 public BigInteger getPeriodMultiplier() {
 return this.periodMultiplier;
 }
 // constructors & other getters and setters 

• In memory - 3 objects - at least 144 bytes	

• The parent, a positive integer and an enumeration for Period	

• 3 Java objects at 48 bytes is 144 bytes and it becomes fragmented in memory

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Java Binding with SDOs

 <resetFrequency>  
 <periodMultiplier>6</periodMultiplier>  
 <period>M</period>  
 </resetFrequency>	

!

• Using C24 SDO binary codec we generate …	

!

 ByteBuffer data; // From the root object

 public BigInteger getPeriodMultiplier() {
 int byteOffset = 123; // Actually a lot more complex
 return BigInteger.valueOf(data.get(byteOffset) & 0x1F);
 }
 // constructors & other getters  

• In memory -1 byte for all three fields	

• The root contains one ByteBuffer which is a wrapper for byte[]	

• The getters use bit-fields, Period is just 3 bits for values D, W, M, Q or Y

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

SDOs - So far*

• ISDA’s sample Interest Rate Derivative (vanilla swap) is 7.4k	

• We randomised a few fields and created a few million for testing	

!

• Zipped they are average 1,547 bytes	

• 1 million on disk require 1.5GB and takes 200 seconds to read/decompress	

• Parsing at 20k/sec would add another 50 seconds and need a lot of memory	

!

• In memory they are roughly 25k in size (in 2-400 objects)	

• It was difficult to fit 400k into 10GB of RAM - Lots of full GCs too	

!

• With SDOs the average size was just 442 bytes	

• It took 9 seconds to read and parse 1 million from disk (SSD)	

• It took 415ms to search through all 1 million IRSs in memory (brute force)	

• 20 million fully parsed IRSs comfortably fit in 10GB of RAM	

!

• Total saving on memory with FpML is roughly 50 times
* Tests were run on Java 1.7.0_55 on a MacBook Pro (2.7 GHz Intel i7) on a single core, we continue to improve these figures

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Examples

• Take 60GB of XML, bind it to Java and we now have 200+GB	

• Now we need a 4 good machines (64GB) or 8 if we want  

high availability (HA) to host this in memory	

!
!

• The average size of the messages means machine synchronisation
over the network is slow	

• Each message needs several network (IP) packets (per 1 MTU)	

!
!

• With binary XML we now need under 5GB to store the same
data - OK 2 machines for HA but “small” (cheaper) machines	

• Now each message is smaller than the MTU size so network synchronisation

is much faster too

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

CPU cache fragmentation

• If your entire object is in one block in memory then the entire
object is very likely to hit the CPU cache - as is the next one	

!

• Serialize a complex bound Java object and you’re serialising
hundreds of objects with metadata (to name the objects)	

!

• Serialize our binary XML and we serialize the object ID, the size
and the byte[]	

• Use NIO and we can serialise (and de-serialize) a million FpML trades to/

from disk in seconds	

• Use SDOs with SSDs can give better performance than distributed RAM	

• You can now get 20-50TB SSD drives from companies like Pure Storage	

• No network means you can take the P out of CAP theorem	

!

• This sort of performance can change your design and architecture

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Reference Data - FIGI example

• FIGI - Financial Instrument Global Identifier (from Bloomberg)	

• Run through the OMG, hoping to become an ISO standard	

• Supported by 28 global institutions including…	

• NASDAQ, NYSE, FINRA, Paribas, State Street, Morgan Stanley, Markit, IDC, Moody’s etc.	

!

• 185 million identifiers (so far) roughly 250 bytes each	

• Totalling about 50GB of raw data (CSV), a few hundred GB in a database	

!

• With SDOs we’ve got this down to under 12GB in-memory	

!

• So why both to compact it when it’ll easily fit on a database?	

• Well it changes daily, how are you going to keep your world-wide databases

in synch?	

!

• Reference data is key to system and needs to be held locally

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Caching

• We’ve released white papers on SDOs with several popular
caching technologies	

• GemFire	

• GigaSpaces	

• Ehcache	

• HazelCast	

• Coherence	

• GridGain	

!

• C24 SDOs combined with these caches improved storage
capacity from 22 to 65 times using FpML (an XML message type)
over “classic” Java-Bound objects in the same store	

!

• Even non-Java technologies like Redis and Riak run fantastically
faster with SDOs, they have less data to manage

© 2014 C24 Technologies Confidential Information of C24 Technologies Ltd.

Performance

Size

How it works

!
!
!

Or any XML
message

C24 Parser	

(Classic Java API)

C24 Validation
(Optional step)

SDO Sink	

(Converts CDO

to SDO)

XML
Full C24 CDO API	

(Getters, setters, rules,
validation & transformation)

Full C24 SDO API	

(Getters only)

SDO API	

(to binary FpML)

SDO Source	

(Converts SDO

to CDO)

~5-8k 10-25k < 500 bytes

10k/sec ~1m/sec ~1m/sec

Identical APIs	

(for getters)

© 2014 C24 Technologies Confidential Information of C24 TechnologiesConfidential Information of C24 Technologies Ltd.Confidential Information of C24 Technologies

20 million fully parsed
FpML messages on a
laptop and search ANY field
at over 2 million a second

