www.CZ4.bizI

A\t~ Turn your XML into Binary

Make it smaller and faster

John Davies | CTO

@)jtdavies

QCon New York | 12" June 2014

C Computing power

www.C24 .biz

® Apollo | I’'s guidance computer had just 2k of
memory and 32k of read-only storage

But it got it to the moon - and back!
® Most of the time :-)

® Today you can compress a full 1080p movie into

about |1 GB and watch it on your mobile phone

¢ |080p is 2 million pixels, with full
colour that’s 6MB per image, at 25
images a second that’s about 15GB
for a 100 minute film

® Why then do we have problems getting XML into memory?

www.C24 . biz I

@ | ,
_ —

® Anyone remember serial interfaces!?

® You had to know the settings before it worked
® Speed, stop bits and start bits

Mark

® Everything was 8 bits in fact most text was 7 bits and the top bit
was parity, on the other hand parity was also another option

® Them were days!

www.C24 . biz I

C Size mattered!

www.C24 . biz

® |t was less than 20 years ago when the
World Wide Web started — T

® Every image had to be compressed

® The art of programming was i g
knowing how to read and write R
data into and out of binary :

® Every programmer was familiar with bit-wise operators
o<< &A | ~>>

® We could all calculate in two’s complement ¢
® We all knew Logio 2 off by heart 7,3:77,0;?5%%? |

%
® Real programmers don’t eat quiche! //077811?

C2L|_ The quiche eaters .. /‘K

® With Assembler, C and C++ we had to allocate the memory we

used and free it when we'd finished
® |[f we wrote the constructor then we knew exactly how much memory we
were using - down to the byte

® With Java,VB, C# and other “quiche eater” languages everything is

taken care of with memory management and garbage collection
® We become very lazy, with machines getting faster and more memory to
tend we forget about writing efficient code

® Take a complex derivative in XML, bind it to Java, stick it into a

cache, distribute the cache, job done!
® Volumes have got the better of us though

www.C24 . biz I

WWW.

C2L|, Last year...

® | ast year a similar talk on “In-Memory Message & Trade

Repositories”

c
=
@)
O

N
ATy

e <

e

T

SWIFT FIN,
Proprietary

e i
(']

Operations, Services &

*ml
XBRL

Migdle Front
Office Office

Finance

Cenerel

= o ==
= e =)
= = =
= - =
= =l =)
==l =g

v
>
2.
(Y]

d

Add a few standards...

O
o]
(@]

=
= ol

=

| 1
. FIX/FIXmL/FpML
cenL Omeeo CTW/OG/0GD
150 15022
\ l
Qb

i\

B %

Customers

Copyright © 2013 InceptS Ltd. hetpilfwww inceptS.com

US < > E
fg = e = = §§ = =
i == i g
. = = -
ch o L o o) 3
ig B) =l e == =l =) 2§

=
=== 31—
A T T A
SWIFT FIN :1"?;15 F'X;S:(F";l;r:m FIX/FIXml,
150 20022 mobile IS0 20022 Proprietary
} l |
C t Market Exchanges &
orporate
Customers Private Counterparties Market Data

Providers

Central
Banks

Local Market Agents,
National & International
Payment networks

Regulatory Clearing & Settlement
Bodies Utilities

IncepP

C

WWWwW.

C24.biz|

C2L|. Back to last year’s slides...

e An FX Swap
e |4 Level of hierarchy ‘
e Over 3,000 elements
J ‘
e To the right is the fill message zoomed out ‘\

e Below is the part in the box zoomed in a little...

i S SRS |
- ey
www%

CZLr Nasty XML

www.C24 . biz

e The schema describes the worst-
case but many of the simpler
“contracts” (XML instances) are
vastly simpler

e The FX swap on the right is
pretty much all of the
information needed to describe

the contract
e There are no options in this example

<trade>
<tradeHeader>

<tradeDate>2002-01-23</tradeDate>
</tradeHeader>
<fxSwap>
<productType>FxSwap</productType>
<nearLeg>
<exchangedCurrencyl>

<paymentAmount>
<currency>GBP</currency>
<amount>10000000</amount>
</paymentAmount>
</exchangedCurrencyl>
<exchangedCurrency2>

<paymentAmount>
<currency>USD</currency>
<amount>14800000</amount>
</paymentAmount>
</exchangedCurrency2>
<valueDate>2002-01-25</valueDate>
<exchangeRate>

<rate>1.48</rate>
</exchangeRate>
</nearLeg>
<farLeg>
</farLeg>
</fxSwap>
</trade>

C

/ww.C24

.biz

® |[t's not just memory that has issues with size and complexity

ORM - OMG!

e Object Relational Mapping (ORM) is sheer craziness!

e The ORM version of the FpML swap has well over
1,000 tables and a single join is several ‘k’ in size

e We could create new tables for each contract but
that’s what we started doing in 2000 and that didn’t
work

e Many of these systems are what we have today and this is
causing more and more pain

e ORM - Hibernate, JPA etc. was designed for simpler
cases

Copyright @ 2013 Incept5 Ltd. http:/iwwwiincepts.com | n C e pP

www.C24.bizI

- O
C2L|. Chuck it into memory “/m

e Either people have been listening to me or I've just been talking

about what everyone’s doing

® | like to think it’s partly the former because | tend to talk about things
BEFORE they happen, not afterward otherwise you wouldn’t be interested

® The problem with putting things into memory is cost

® |t works really fast and most people tend to think it’s as fast as
you're going to get so just pay the money

® One client has 400 nodes with over I5TB of in-memory data
® That’s VERY expensive to run, several $million per year!

C2L|. Let’s take a step back

WWW.

e Take a look at this XML, the bits in

red are data, the rest is meta-data
® The structure is also part of the metadata

® The actual information here is
relatively small

® Pre-XML in the 90s we’d have stored
this in a much more efficient way

® But without XML Schema we didn’t
have the standards we have toady

<trade>
<tradeHeader>

<tradeDate>2002-01-23</tradeDate>
</tradeHeader>
<fxSwap>
<productType>FxSwap</productType>
<nearLeg>
<exchangedCurrencyl>

<paymentAmount>
<currency>GBP</currency>
<amount>10000000</amount>
</paymentAmount>
</exchangedCurrencyl>
<exchangedCurrency2>

<paymentAmount>
<currency>USD</currency>
<amount>14800000</amount>
</paymentAmount>
</exchangedCurrency2>
<valueDate>2002-01-25</valueDate>
<exchangeRate>

<rate>1.48</rate>
</exchangeRate>
</nearLeg>
<farLeg>
</farLeg>
</fxSwap>
</trade>

C

ww.C24

.biz

C2L|. Java Binding

Www.

e XML is really fast when bound to Java but it’s often even
more bloated...

<Row>
<Name>Tim Cook</Name>
<CardNumber>4924-7264-1264-8532</CardNumber>
<ExpiryDate>04/09</ExpiryDate>
<Amount>12250</Amount>
<Currency>USD</Currency>
<TransactionDate>2006-09- 1 6</TransactionDate>

<Commission>|.3</Commission>
<VendoriD>67434435</VendorID>

public class Row extends biz.c24.io.api.data.ComplexDataObject {
<Country>US</Country> private java.lang.String name;

</Row> private java.lang.String cardNumber;

private java.lang.String expiryDate;

private double amount;

private boolean isamountSet;

private java.lang.String currency;

private java.util.Date transactionDate;

private double commission;

private boolean iscommissionSet;

private long vendorlID;

private boolean isvendorIDSet;

private java.lang.String country;

www.C24.biZ|

g
C2L complexObiecs 4 g

e Every Java String is minimum 48 bytes in size, whether you're
on the heap or not objects get fragmented in memory

public class Row extends biz.c24.io.api.data.ComplexDataObject {
private java.lang.String name;
private java.lang.String cardNumber;
private java. lang.String expiryDate;
private double amount;
private boolean isamountSet;
private java. lang.String currency;
private java.util.Date transactionDate;
private double commission;
private boolean iscommissionSet;
private long vendorID;
private boolean isvendorIDSet;
private java. lang.String country;

www.C24.biz I

Csz Binary models

WWW.

® Many of the network-critical standards like telcos and older
standards are defined in binary

® The following is an extract from a binary standard called RADIUS
used by Telcos

® They use bit-fields to indicate the presence of data (or not)

0 1 2 3

012345678901 23456789 0123456789701
totetetetototot—t—t ottt ettt ettt ettt —F—F =ttt —F—F—F—F+—+

| Type | Length | Vendor-Id
e g S St S X
Vendor-Id (cont) | Vendor type | Vendor length |

ettt etetet ettt ettt ettt ottt ettt ettt =ttt =ttt =+
| Attribute-Specific...
ettt ot—t ottt ettt —t—F—t—

Multiple subattributes MAY be encoded within a single Vendor-
Specific attribute, although they do not have to be.

www.C24.biz I

The RADIUS Model

www.C24 biz

Component Type Cardinality Size
v & Document Root & Document Root (local) 16 - *
¥ <> Packet File ¢ Packet File 1 16 -
¥ <> packet ¢ Packet 1..* 16 -
<> code [J code (local) 1 0
<> identifier [J identifier (local) 1 0
<> length [J length (local) 1 0
<> authenticathor [J authenticator 1 16
¥ <> attribute ¢ attributes 1..* 0-*
<> type [J type (local) 1 0-*
<> length [P attribute length 0..1 0-
v <> value ¢ value (local) 0..1 0-*
¥ <> user ¢l user (local) 1 0
<> user-id SJ Unbounded Byte Type 1 0
¥ <> vendor ¢* vendor (local) 1 0-*
<> vendor-id SJ Unsigned 4-byte Word 1 0
¥ <> attributes ¢ attributes 0.* 0 -
<> type [P type (local) 1 0 -
<> length [J attribute length 0..1 0 -
¥ <> value ¢ value (local) 0..1 0 -
b <> user ¢ user (local) 1 0
» <> vendor ¢. vendor (local) 1 0-*
» <> Calling-Station & Calling-Station-Id (local) 1 0
b <> user-passworc#’ user-password (local) 1 0
» <> CHAP-Passwor ¢! CHAP-Password (local) 1 16
> <> NAS-IP-Addre & NAS-IP-Address (local) 1 0
> <> NAS-Port ¢ NAS-Port (local) 1 0
» <> Calling-Station-Id ¢ Calling-Station-Id (local) 1 0
b <> user-password ¢’ user-password (local) 1 0
» <> CHAP-Password ¢ CHAP-Password (local) 1 16
» <> NAS-IP-Address &' NAS-IP-Address (local) 1 0
» <> NAS-Port ¢’ NAS-Port (local) 1 0 C 2!
www.C24 . biz

C2L|. Binary XML?

WWwWWw.

® What we got was an incredibly small derivative message based on
FpML

e Rather than being the implementation it was simply our end-goal
® |[f we could get the XML version down to this size we'd achieved our goal

® Debugging this stuff was like stepping back to the 80s

jd-server:Radius TestData jdavies$ hexdump -C radius.dat
00000000 01 02 00 74 ea d5 7c 62 1f dO £6 fe a3 bf 36 4c |...t..|b...... 6L |
00000010 35 25 e5 8c 1la 17 00 00 28 af 01 11 32 33 34 34 [5%...... (...2344|
00000020 35 37 30 36 32 37 38 38 35 33 36 01 11 32 33 34 |57062788536..234]|
00000030 31 35 39 30 36 32 35 38 38 35 33 36 1f 11 33 35 |159062588536..35]
00000040 33 34 32 31 30 32 30 39 34 35 35 36 38 5e Oe 34 [3421020945568~.4|
00000050 34 37 30 30 34 31 38 38 36 37 33 la 0d 00 00 28 |47004188673.... (|
00000060 4e 97 57 a8 IN.W. |

www.C24 . biz I

C2l, Old + Modern

www.C24 . biz

® Now we could combine binary and Spring and run it on Java 8

<filter input-channel="filter-message-channel"”
output-channel="process-message-channel"”
ref="payload” method="isAbcSet"/>

<filter input-channel="filter-message-channel"”
output-channel="process-message-channel"”
expression="payload.versionId == 5"/>

www.C24.biz I

C 2Lf Lazy getters

WWW.

p blic‘ 1 s Row extends piz.c24.io.api.data.ComplexDataObject {
. . . privat 3252:?23:?223 L‘a’“quugbt:

® Going back to our classic bound Java object i s o

private boolean isamountSet;
- e brivate Java.utis.bate trancactionpat
the getters simply returned the object e s mission

private boolean iscommissionSet
private long vendorlID;
private boolean isvendorIDSet
private java.lang.String country

o setNumberOfElements() { return numberOfElements; }

® Now we have to find the value in the byte[] and return the

calculated value
public int getNumberOfElements() {
return ((data.get(2) & 0x18) >> 3);

}

® Performance is about the same but we only use about |/25th of
the memory

www.C24.biz I

C2, soos ¥ o G

® SDOs or Simple Data Obijects are basically Java Binding into a
compact binary codec - From any XML format to binary

® We analyse the data model (or XML schema) not just the

instance data so can do things like...

® Reducing the 7 days of the week to just 3 bits

¢ Commonly used Strings become lookups into a static table (1 or 2 bytes)
® Currencies for example only need | byte

® Date/Time with timezone can be stored in 6 bytes

e Bit-fields are compacted resulting in excellent compaction-ratios
® Getters calculate the offset on the fly, mask and shift the data and return it

® There is NO change to the getter APl between standard binding

and SDOs
C2

C2Lf Standard Java Binding

Www.

<resetFrequency>
<periodMultiplier>6</periodMultiplier>

<period>M</period>
</resetFrequency>

e JAXB, JIBX, Castor and standard C24 generate something like ...

public class ResetFrequency {
private BigInteger periodMultiplier; // Positive Integer
private Object period; // Enum of D, W, M, Q, Y

public BigInteger getPeriodMultiplier () {
return this.periodMultiplier;

}

// constructors & other getters and setters

® [n memory - 3 objects - at least 144 bytes
® The parent, a positive integer and an enumeration for Period
® 3 Java objects at 48 bytes is 144 bytes and it becomes fragmented in memory

www.C24 .biz

C2L, Java Binding with SDOs

Www.

<resetFrequency>
<periodMultiplier>6</periodMultiplier>

<period>M</period>
</resetFrequency>

e Using C24 SDO binary codec we generate ...

ByteBuffer data; // From the root object

public BigInteger getPeriodMultiplier () {
int byteOffset = 123; // Actually a lot more complex
return BigInteger.valueOf(data.get (byteOffset) & Ox1F) ;

}

// constructors & other getters

® [n memory -| byte for all three fields
® The root contains one ByteBuffer which is a wrapper for byte[]
® The getters use bit-fields, Period is just 3 bits for values D,VW, M, Q orY

www.C24.bizI

C2l soos-sor S G

® |SDA’s sample Interest Rate Derivative (vanilla swap) is 7.4k
® We randomised a few fields and created a few million for testing

e Zipped they are average 1,547 bytes

® | million on disk require 1.5GB and takes 200 seconds to read/decompress
® Parsing at 20k/sec would add another 50 seconds and need a lot of memory

® |n memory they are roughly 25k in size (in 2-400 objects)
e |t was difficult to fit 400k into 0GB of RAM - Lots of full GCs too

e With SDOs the average size was just 442 bytes
® |t took 9 seconds to read and parse | million from disk (SSD)

® |t took 415ms to search through all | million IRSs in memory (brute force)
® 20 million fully parsed IRSs comfortably fit in 0GB of RAM

® Total saving on memory with FpML is roughly 50 times

* Tests were run on Java 1.7.0_55 on a MacBook Pro (2.7 GHz Intel i7) on a single core, we continue to improve these figures < 2 l
24 .biz

@
(2L Examples v

e Take 60GB of XML, bind it to Java and we now have 200+GB -

® Now we need a 4 good machines (64GB) or 8 if we want
high availability (HA) to host this in memory

® The average size of the messages means machine synchronisation

over the network is slow
® Fach message needs several network (IP) packets (per | MTU)

® With binary XML we now need under 5GB to store the same

data - OK 2 machines for HA but “small” (cheaper) machines
® Now each message is smaller than the MTU size so network synchronisation
is much faster too

- ‘
C2L|_ CPU cache fragmentation “/K

e |f your entire object is in one block in memory then the entire
object is very likely to hit the CPU cache - as is the next one

® Serialize a complex bound Java object and you're serialising
hundreds of objects with metadata (to name the objects)

® Serialize our binary XML and we serialize the object ID, the size
and the byte[]

® Use NIO and we can serialise (and de-serialize) a million FpML trades to/
from disk in seconds

® Use SDOs with SSDs can give better performance than distributed RAM

® You can now get 20-50TB SSD drives from companies like Pure Storage

® No network means you can take the P out of CAP theorem

® This sort of performance can change your design and architecture

g
C + Reference Data - FIGI examw

® FIGI - Financial Instrument Global Identifier (from Bloomberg)
® Run through the OMG, hoping to become an ISO standard

® Supported by 28 global institutions including...
e NASDAQ, NYSE, FINRA, Paribas, State Street, Morgan Stanley, Markit, IDC, Moody’s etc.

e |85 million identifiers (so far) roughly 250 bytes each
® Totalling about 50GB of raw data (CSV), a few hundred GB in a database

e With SDOs we've got this down to under |2GB in-memory

® So why both to compact it when it'll easily fit on a database!?
® Well it changes daily, how are you going to keep your world-wide databases
in synch?

® Reference data is key to system and needs to be held locally

Www.C24.bizI

CZLr Caching ”

® We've released white papers on SDOs with several popular

caching technologies B EH HIE

® GemFire

® GigaSpaces GEMFIRE ‘Q)G'BA

® Ehcache GridGain 2

° HazeICaSt . REAL TIME BIG DATA ORACLEQ
® Coherence l. h32€|ca5t Coherence

® GridGain

e C24 SDOs combined with these caches improved storage
capacity from 22 to 65 times using FpML (an XML message type)
over “classic” Java-Bound objects in the same store

® Even non-Java technologies like Redis and Riak run fantastically
faster with SDOs, they have less data to manage
C2L

C How it works

www.C24 biz

~5-8k 10-25k Size < 500 bytes

10k/sec ~1m/sec Performance ~1m/sec

FpML

Financial products Markup Language

Or any XML
message

Full C24 CDO API
XML (Getters, setters, rules, <«—»

Identical APIs Full C24 SDO API

(for getters) (Getters only)

validation & transformation)

www.CZ4.biz|

20 million fully parsed

FpML messages on a

laptop and search ANY field
\at over 2 million a second)

www,024.bizl

