Why Your Team Has Slowed Down,
Why That's Worse than You Think
(And How to Fix It)

Edmund Jorgensen
@tomheon

Hut 8 Labs

QCon New York, 11 June 2014

“Latency”

Going to talk a lot about “Latency” of your dev team, by which |
mean: how much calendar time passes between the request for
something (feature, bugfix) and the safe, sane delivery of that
thing.

A Tale in 3 Acts

1. Why to Invest in Latency Reduction
2. How to Invest in Latency Reduction

3. How to Get the Very Important People On Board with Your
Investments

Act 1:

Why to Invest in Latency
Reduction

One answer:
Deliver features and bugfixes
to your customers quicker
because they love that!

True, but if we only consider that reason, we'll under-invest in
latency reduction, b/c the reality is even more economically
powerful.

Thought Experiment:
A Tale of Two Dev Teams

Meet Michael.

He's a CEO.

This is Michael. Michael is the CEO of a company makes its
money off big, enterprise contracts, and a prospect he's been after
for a long time is entertaining proofs of concept on a project.

If he lands this contract, it could set his business up for 5 years. If
he loses it, the company may go under. The prospect has
submitted a call for proofs of concept and is going to look at them
all-Michael’s and the competition’s—in 90 days, not earlier, so the
“deliver early to customers” advantage is gone.

Two Options

Regular Dev Team
» Good proof of concept
» $100,000
» 90 days

Insanely Fast Dev Team
» Good proof of concept
» $100,000
» 1 Second

Michael has 2 options for dev teams to create the POC. One is a
good, solid team that could complete the task in 90 days, for a
total cost of $100,000. The other is an insanely fast team who
charge $100,000 a second, but can complete the same POC in
only one second of work.

To call this out more explicitly: both teams would produce the
same quality work, at the same cost. Only their latency differs.

Does this matter, in a world where early delivery is disallowed?

Regular Dev Team =
No Choices to Make

If Michael chooses the regular dev team, he has no decisions to
make about when they do their work. They have to start work on
the POC today just to finish in time for presentations.

Insanely Fast Dev Team =

~7,776,000 Choices to Make

With the insanely fast team, on the other hand, he has almost 8
million choices to make (that being the number of seconds in 90
days), since he could build the POC in any one of them. But are
any of these choices valuable?

One option that jumps out is having the Insanely Fast Dev Team
produce the POC in the ver first second. Michael can’t deliver it
early by the prospect’s rules, but are there any other options
available to him?

lterate

He can show the POC around to some decent proxies for the
customer, get their reactions, and incorporate those reactions into
a second version of the POC (which will cost him an additional
$100,000-more on that later).

Abandon

Maybe when Michael presents the early POC to one of the
customer proxies, he gets the following reaction:

“This looks great—all you need to do now is attach DNA samples
and medical histories for each of these records and you've got
something really valuable!”

Michael can abandon the project immediately and turn his money
and attention to other projects that won't require illegal data to
be valuable. He is 90 days ahead of his competition getting into
other markets, while he knows that they're drawing dead with their

own POCs.

So yeah, producing the POC in the first second can give Michael
some huge advantages, even if he can't deliver early. That Insanely
Fast Dev Team is looking pretty good right about now. But
wait...there's more!

What if Michael goes to the other extreme, and waits until the last
second to produce the POC—procratinates like there's no
tomorrow—does that give him any interesting advantages?

Michael can use that time to do a ton of research (which is usually
cheaper than development) before he commits to building. He can
literally wait until the last second and use something he learned in
the hallway waiting to present in order to produce a better POC.

So yes, there are benefits to waiting until the last minute.

Mix and Match!

But the real power of the Insanely Fast Dev team becomes
apparent when Michael combines the “build early” and “build late
strategies. He does cheap research until he feels he'd gain more
information with something to show. Now he builds (in a second)
a POC, and gets feedback on it, rinsing and repeating until:

> He feels that a new iteration isn't worth $100,000

» He decides to scrap the project

Finish early, start late =
Information Gain

What the Insanely Fast Dev Team gives Michael is the ability to
(in the word of Don Reinertsen) finish early and start late, which
allows for information gain: tasks that finish early tend to generate
information, and tasks that start late can benefit from newly
available information.

In the presence of uncertainty—which software development is all
about—information is value. So this ability to finish early and start
late, thereby gaining information, is tremendously valuable.

The poor old regular dev team, with their higher latency, has to
start early and finish late just to get the job done. They can
neither generate information for later tasks, or take advantage of
newly available information.

Which team

should Michael choose?

Shut up and take my money!

It's a formality at this point—he should choose the Insanely Fast
Team and their reduced latency—in fact, he should be willing to pay
much more than $100,000 to get access to that team.

Michael is psyched to have the
option to
spend more on
invest more with
the Insanely Fast Development
Team.

Sinking an extra million, even, into a much improved chance to
land a 25 million dollar contract is an investment, not a “cost”

(the difference being: you expect an investment to return to you,
increased).

(Footnote: Realistic Drops in Latency)

Quarterly Release to Hourly Release
90 Days * 24 Hours =

~2,000x reduction in latency

Easy objection: sure, going from 90 days to 1 second would be
awesome, but in the real world that's impossible. But it's not
impossible to reduce latency on simple features, bugfixes, etc. from
quarterly to hourly releases (it requires real investment, but many
places have done it). That's huge.

Why to Invest in Latency Reduction

» Reducing latency creates information
» Information == (probabilistic) $

» Reducing latency creates (probabilistic) $

Act 2:

How to Invest in Latency
Reduction

Even once we understand why to invest in latency reduction, it's
not always easy to actually do it.

Some Common ion Strategies

| don't want to talk about these.

Like, at all.

2 things: these “solutions” are cop-outs—trying to turn an
organizational and economic concern into something moral and
personal. Also, as “solutions” they don't work particularly well.

“There's nothing else to do
today—let's reduce some latency.”

a) Abraham Lincoln
b) Larry Page
c) No one, ever

First key for how to invest in reducing latency is to realize that it
never happens in a vacuum, but in the day to day insanity of a real
business, where it's hard to see latency.

Case Study: A Tale of Two

Engineers

Let's get at this through a case study.

Meet Cindy.

She's an engineering leader.

Cindy is an engineering leader at a company building social
networks for animals. They're killing it. When she arrives one
morning two of her engineers are waiting for her.

Bruce: SO MANY
MIGRAAAAAATIONNNNNNS

Bruce complains that he's spending half an hour every morning

getting production db migrations live for people, since he's the only
one who understands the production db enough to do it. He wants
to stop working on features for a week to write a migration script.

=
=
z

Roy: FROBULATOR
RAGE...BUILDING

Roy is angry about the quality of the code in the Frobulator
service, which he recently rediscovered while updating copyright
headers. It was banged out crappily in PHP and now he wants to
stop working on features to rewrite it in Scala.

So what would we do, if we were in Cindy's shoes? We can't make
everyone happy—either features are going to get pushed back, or
these engineers’ projects are.

Your time is valuable, Bruce.

One way to handle it: Bruce, your time is valuable, because of
your expertise with the db. We have to invest it wisely. If a 40
hour investment in a migration script saves you 1/2 a day, that's
80 business days to recoup invsestment—too long!

-
=

Think of the customer, Roy.

We explain to Roy: our customers can't tell if the Frobulator
service is bad PHP or transcendant Scala, and they don't care.
Being focused on the customers and the business means we have
to be super jealous of hours we spend on projects that are invisible
to customers.

So we feel good—we've taken an economic approach, stayed
focused on the customer, and saved our business a pile of money.
Or maybe...

We have just lit a bunch of money on fire. What's going on here?
How did we cost our business so much money when we thought we
were saving it?

We have fallen for two of the
classic blunders.

Classic Blunder #1:

Obsessing over “Paid Engineer
Hours” instead of Latency

How we experience the world:
» Paid engineer hours = expensive

» Latency = (merely) annoying

How the world really is:
» Paid engineer hours = expensive
» Latency = MASSIVELY expensive

Classic Blunder #2:
Morality

Michael the CEO got to write
a check to reduce latency...

Which feels clean and easy, without the moral or psychological
barriers.

...we often have to invest
engineer hours.

Which comes with a lot of baggage. It feels a litttle wrong for
engineers to spend paid hours making their own lives better.

Won't somebody please think
of the customers?

It feels like, morally, they should be spending that time on the
customers. | mean, aren't jobs supposed to suck?

But if we love the customer, we want to stay in business, and be
able to deliver in a timely fashion indefinitely. That's what latency
reduction is about.

A Tale of Two Engineers
(Redux)

With these blunders in mind, let's revisit Bruce and Roy.

WAAH I'M TIRED OF MY
JOB AND NEED TO BE CAT
HERDED

This is basically what we heard from Bruce, if we're being honest
about our reaction.

Danger, Will Robinson!

This is what we should have heard from Bruce—reality sending us
an early warning. “Latency is brewing in your engineering org!”

What happens if Bruce takes a...gasp...vacation? The queue will
grow while he's gone, and nothing will go out. What if Bruce
silently decides to be more “efficient” and only push migrations
once a week? Our latency has just skyrocketed, catastrophically
and invisibly.

We should let Bruce write his migration script—this is a no brainer.

=
=
..f‘g-
=

WAAH I'M A
PERFECTIONIST AND NEED
TO BE CAT HERDED

This is basically what we heard from Roy.

This is what we should have heard.

Roy told us he was in the Frobulator service to “update copyright
headers.” Is this a clue that he hasn't been in the Frobulator
service code for at least a year? Why not? Is this the case with

other engineers too?

If the Frobulator Service is just frobulating fine, and needs no
work, great.

If, on the other hand, the engineers are terrified of it because it's
such a mess, and don't make changes there, it could be
introducing latency.

There are no top down solutions to latency. Latency will always
creep in. A new QC process here, another step there... We should
be calmly, bravely terrified, and always on the lookout,
remembering that our “gut reactions” about the expense of
latency are probably wrong.

KEEP
CALM

AND

CONSTANT
VIGILANCE

And we should teach this calm, brave terror to our whole team. No
one person can see all the brewing latency. Make it something
everyone hates, seeks out, and termintes.

Good Bets for Getting Started
in Latency Reduction
Investment

Generally:
Operational /Processy beats
Frameworky
(Especially at the beginning)

Please don't make me spin up
a new server...

Find things that engineers complain about—latency is often
experienced as annoying—and invest in making them better.

“Only Joe can make changes
to the user service.”

Just like with Bruce, having one person be the “super hero” of
some piece of code / process creates latency. Make them the super
hero for training others instead.

Good tests reduce latency because they allow you to move faster
and spend less time fighting fires.

| AM IN UR SERVERS

MONITORING UR VALUE
CREATION

Good monitors reduce latency because they allow you to move
faster and spend less time fighting fires.

Keep it Incremental FTW

But when it's finished...

...it will be AMAZING.

This is how many / most engineers want to handle these kinds of
projects—tear everything down and build it right! Terrible idea in
general, and especially with latency reduction.

Because latency reduction has this extra weird recursive nature, in
that investments in latency reduction speed up the same
channels by which we make future latency reduction.

“The most powerful force in
the universe.”

—Albert Einstein (maybe)

That makes latency reduction a form of compound interest. And
just like with your retirement account, small frequent investments
earn more compound interest overall compared to big infrequent
investments.

Recap: How to Invest in Latency Reduction

v

Beware the Classic Blunders (“paid engineer hours” vs.
latency, morality)

v

Cultivate a Calm Team-Wide Terror of Latency

v

Start with Operational and Process Wins

v

Keep it incremental

Act 3:

How to Get the Very Important
People On Board with Your
Investments

These are the bosses, bosses' bosses, and so on. They sign the
checks and make a lot of the decisions. How do we get them on
board with our latency reduction investments?

Allegory of the Warehouse

Meet Bob.

He's a foreman in a warehouse.

Bob has a problem.

Latency is way up in the warehouse, which means profits are down
and the VIPs are not happy. The latency is being caused by a
problem that a lot of warehouses have these days...

/)

Ninjas. Obstructionist ninjas who pop out in the aisles and...

Insist that forklift operators juggle to entertain them before being
allowed to be on their way.

Ninja Convention...

Sold out!

Even worse, the ninjas sense when VIPs are near and, being jerks,
melt into the shadows, so the VIP sees only a forklift operator

juggling.

Allegorical Key:

Bob = engineering leader
Forklift operators = engineers
Ninjas = sources of latency

Solutions to Bob's / our
problem?

Hire morel!

This is a natural response, but usually doesn't turn out well-we're
adding bandwidth, not reducing latency. One ninja can block 4
operators in an aisle-one bottleneck getting changes to production
can hold back 10 engineers.

Hire different!

Maybe Bob hires only professional jugglers, who can please the
ninjas quicker. Maybe we hire only those mythical 1% of engineers
who can juggle all the problems and still move fast. This is better
than just hiring, but isn't scaleable.

THOSE NINJAS

-

RICKEDSTHE WRONG WAREHOUSE
e neyen SO el

Bring the fight to the ninjas.

Maybe Bob's team spends Thursday afternoons hunting down the
ninjas. They'll come back, but until then there's less latency.
Maybe we, as engineers, spend some of our time on reducing
latency.

Only one small problem...

YEAHIFYOU/COULD/GO/AHEAD
ANDINOT.HUNTIINVISIBLENINJAS

_ THAT.WOULDIBE
GREAT

menegenerator.net

Often to the VIPs at software businesses, the causes of latency are
just as invisible as these ninjas. We sound crazy if we talk about
them.

“You're telling me you want to
forklift stuff faster... by taking
butts out of forklifts?”

s/butts in forklifts/fingers on
keyboards/

The first rule of selling ninja
hunts to the Very Important
People is...

Do not talk about ninjas.

The second rule of selling ninja
hunts to the Very Important
People is...

DO NOT TALK about ninjas.

Ninja Hunt Taboo—the Game

» Database

» Optimize

» Technical Debt
> etc.

> etc.

> etc.

Treat selling latency reduction like a game of Taboo. Don’t
mention anything that sounds like the ninjas.

Don't be this guy...

Be this guy.

Because inside every Very
Imporant Person...

s this guy.

Inside the VIP is an inner child who just wants to go fast—-make
decisions and see the results right away.

The VIP Experience...

Latency is way up

Quick Wins are way down

But this has been the experience since the VIP joined your
business.

So how do we sell latency reduction to them? By selling “speeding
up" to that inner child. And we make the first one free...

Choose a VIP-visible thing that's slow in your business—e.g., how
long it takes a new advertiser to get on the site. Do a skunkworks
project (off the books!) to improve it. Then advertise your
sponsorship. Repeat a few times.

Aim for 30%.

Use the generated good will to carve out a constant percentage of
time for speeding up. Aim for 30%. It sounds too high. It isn't.

Let’'s work on features
instead...

Just this once.

You want a percentage, not to have to argue for projects
piecemeal, because features will always feel more important. Tie
yourself to the mast with a constant percent of time.

Aauow

Time

Also because a constant percent investment is a great way to invest
in compound-interest bearing accounts—like latency reduction.

(Always be Adopting a
Highway)

Never stop sponsoring the speed up of those highly visible slow
things in the business, because that percentage time is always
going to be at risk.

Recap and Parting Exhortation

1. Sell speed to the VIP's inner child with some visible,
skunkworks wins

2. Use generated goodwill to carve out a constant percentage of
time for latency reduction

3. Keep promoting the latency reduction wins
4. Profit!

DANKE MERCI THANK YOU GRACIAS ARIGAIO
DANKE MERCI THANK YOU GRACIAS ARIGATO
DANYE MERCI THANK YOU GRACIAS ARIGATO
DANEE MERCI THANK YOU GRACIAS ARIGATO
DANKE MERCI THANK YOU GRACIAS ARIGATO
DANKE MERCI THANK YOU GRACIAS ARIGATO
DANKE MERCI THANK YOU GRACIAS ARIGATO
DANKE MERCi THANK YOU GRACIAS ARIGATO
DANKE MERCI THANK YOU GRACIAS ARIGATO
DANKE'MERCI THANK YOU GRACIAS ARIGATO
DANKE MERCI THANK YOU GRACIAS ARIGATO
DANKE MERC| THANK YOU GRACIAS ARIGATO
DANKE MERC| THANK YOU GRACIAS ARIGATO
DANKE MERC| THANK YOU GRACIAS ARIGATC
DANKE MERCI THANK YOU GRACIAS ARIGATO
DANKE MERCI THANK YOU GRACIAS ARIGATO
DANKE MERCI THANK YOU GRACIAS ARIGATO
DANKE MERCI THANK YOU GRACIAS ARIGATO
YANKE MERC| THANK YOU GRACIAS ARIGATO
~ DANKE MERCI THANK YOU GRACIAS ARIGATO
 DANKE MERCI THANK YOU GRACIAS AR'GATO

i e e

More Reading

» The Principles of Product Development Flow, Donald
Reinertsen

» “How to Survive a Ground Up Rewrite”, Dan Milstein

» “Speeding Up Your Engineering Org, Part | (Beyond the Cost
Center Mentality)”, Edmund Jorgensen

» The Goal, Eliyahu M Goldratt

http://www.amazon.com/Principles-Product-Development-Flow-Generation-ebook/dp/B007TKU0O0/
http://onstartups.com/tabid/3339/bid/97052/How-To-Survive-a-Ground-Up-Rewrite-Without-Losing-Your-Sanity.aspx
http://blog.hut8labs.com/speeding-up-your-eng-org-part-i.html
http://blog.hut8labs.com/speeding-up-your-eng-org-part-i.html
http://www.amazon.com/The-Goal-Process-Ongoing-Improvement/dp/0884270610

Image Credits

» Piggy Bank image courtesy of http://401kcalculator.org
» Michael image from
https://www.flickr.com/photos/tristanreville/11297541166
» Stack of chips from
https://www.flickr.com/photos/adrian_s/17623439
» Speedometer image from
https://www.flickr.com/photos/thatguyfromcchs08,/2300190277
» Young engineer from
https://www.flickr.com/photos/mightyohm /2645244056
» Boat from
https://www.flickr.com /photos/lukaszduleba /8333830430
» Procrastinate pennants from
https:/ /www.flickr.com /photos/oliviaew /8387008029
» Talk is Cheap from
https:/ /www.flickr.com /photos/garryknight /6748884071
» Mismatched socks from
https://www.flickr.com/photos/_nezemnaya_/3008150036

Image Credits cont.

>

Mushroom Cloud image from

https://www.flickr.com /photos/epicfireworks/2861531483/
Bruce image from
https://www.flickr.com/photos/mike9alive/2745045822
Burning money from
https://www.flickr.com/photos/purpleslog/2924979423
Baggage from
https://www.flickr.com/photos/aresauburnphotos/5973161314
Boy with dragon shadow from
https://www.flickr.com/photos/cadencrawford /8422302030
Sad dog from
http://www.flickr.com/photos/90543828@N00,/379384313/
Super Hero Joe from
https://www.flickr.com/photos/28208534@N07/2874639194/
Land Kayak from
https://www.flickr.com/photos/romeo66 /2663946311
Monitor lizard from

https: / /www.flickr.com/photos/arnolouise /6121333054

Image Credits cont. cont.

>

Construction pit from

https://www.flickr.com /photos/kenyee /2864004641
Ouroborus from
https://www.flickr.com/photos/lwr/3066148864

Forklift operator from

https://www.flickr.com /photos/toyotamheurope /6890427337
Ninja from
https://www.flickr.com/photos/thekellyscope/5057877769
Juggler from
https://www.flickr.com/photos/helico /404640681
Convention hall from
https://www.flickr.com/photos/whinger/7689179230
Forklift fleet from
https://www.flickr.com/photos/39955793@N07/8620134562
Fire juggler from
https://www.flickr.com/photos/neeravbhatt/6263155845
Lecture hall from

https:/ /www.flickr.com/photos/uniinnsbruck /3722413559

Image Credits cont. cont. cont.

» Adopt a highway from
https://www.flickr.com/photos/amayzing /9469215713

» Waterhouse's Odysseus and Sirens from
https://www.flickr.com/photos/ngmorieson /6081346983

» Thank you bag from
https://www.flickr.com/photos/theredproject/3301279921

» Decision doodad from
https://www.flickr.com/photos/garrettc/91385737

