
From check-ins to recommendations
Jon Hoffman @hoffrocket

QCon NYC – June 11, 2014

About Foursquare

Scaling in two parts

•  Part one: data storage

•  Part two: application complexity

Part 1: Data Storage

2009

Table splits

Venues
Checkins

Users
Friends

Users
Friends

Venues
Checkins DB

DB.A

DB.B

Replication

Master
RW

Slave
RO

Slave
RO

Outgrowing our hardware

•  Not enough RAM for indexes and
working data set

•  100 writes/second/disk

Sharding

•  Manage ourselves in application code on
top of postgres?

•  Use something called Cassandra?

•  Use something called HBase?

•  Use something called Mongo?

Besides Mongo

•  Memcache
•  Elastic search
– nearby venue search
– user search

•  Custom data services
– Read only key value server
–  in memory cache with business logic

HFile Service: Read only KV Store

MR HDFS

hfile_0_b

hfile_1_b

hfile_0
hfile_1

Hadoop HFile Servers

Zookeeper:
 - data type to machine mapping
 - key hash to shard mapping

Application
Servers

hfile_1_a

hfile_0_a

Caching Services

Mongo Oplog Tailer Kafka

Kafka
Consumers

Redis

Application
Servers

Cache
Servers

getUserVenueCounts(
 1: list<i64> userIds
 2: list<ObjectId> venues)

Part 2: application complexity

2009

RPC Tracing

Throttles

Remember the goats?

Monolithic problems

•  Compiling all the code, all the time

•  Deploying all the code all the time

•  Hard to isolate cause of performance

regressions and resource leaks

SOA Infancy

•  Single codebase, Multiple builds

Web

API

Offline

Finagle Era

•  Twitter’s scala based RPC library

service	
 Geocoder	
 {	

	
 	
 GeocodeResponse	
 geocode(

	
 	
 	
 1:	
 GeocodeRequest	
 r	

	
 	
)	

}	

Benefits

•  Independent compile targets

•  Fined grained control on releases and
bug fixes

•  Functional isolation

Problems

•  Duplication in packaging and
deployment efforts

•  Hard to trace execution problems

•  Hard to define/change where things live

•  Networks aren’t reliable

Builds and deploys

•  single service definition file

•  consistent build packaging

•  simple deployment of canary & fleet
./service_releaser	
 –j	
 service_name	

	

Monitoring

•  healthcheck endpoint over http

•  consistent metric names

•  dashboard for every service

Distributed Tracing

Exception Aggregation

Application Discovery

•  Finagle Server Sets + ZK

Circuit Breaking

•  Fast failing RPC calls after some error
rate threshold

•  Loosely based on Netflix’s hystrix

SOA Problem Recap
•  Duplication in packaging and deployment efforts

–  Build and deploy automation

•  Hard to trace execution problems
–  Monitoring consistency
–  Distributed Tracing
–  Error aggregation

•  Hard to define/change where things live
–  Application discovery with zookeeper

•  Networks aren’t reliable

–  Circuit breaking

Organization

•  Smaller teams owning front to back
implementation of features

•  Desire to have quick deploy cycles on
new API endpoints

Remote Endpoints

Wouldn’t it be cool if a developer
could expose a new API endpoint
without redeploying our still
monolithic API server?

Remote Endpoint Benefits

•  Very easy to experiment with new
endpoints

•  Tight contract for service interaction
–  JSON responses
– all http params passed along

•  Clear path to breaking off more chunks
from API monolith

Future work: Part 3?

•  Further isolating services with
independent storage layers?

•  Completely automated continuous
deployment

•  Hybrid immutable/mutable data storage
– mongo & hfile & cache service

Thanks!

•  Want to build these things?

https://foursquare.com/jobs

•  jon@foursquare.com

