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Define Success



Design

Documentation

Quality

Enable Change



Generators Properties
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Generators
Document: what is valid input data?

Design: build up from components

Quality: automatic corner cases

Enable: tests of larger components



Enable: tests of larger components
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Rules



case class Rules(temptationToDefect: Points, 
                 rewardForMutualCooperation: Points, 
                 punishmentForMutualDefection: Points, 
                 suckersPenalty: Points) 



  property("The game is fair") = 
    forAll {(rules: Rules, moves: MoveSet) => 
      val oneWay =      Rules.score(rules, moves) 
      val theOtherWay = Rules.score(rules, moves.swap) 
!

      oneWay.swap == theOtherWay 
    }

object RuleTest extends Properties("Prisoners Dilemma") {

}



property("Defection is always better for me") = 
     forAll {(rules: Rules, theirMove: Move) => 
       val ifIDefect =  
           Rules.score(rules, (Defect, theirMove))._1 
       val ifICooperate =  
           Rules.score(rules, (Cooperate, theirMove))._1 
!

       ifIDefect > ifICooperate 
     } 

object RuleTest extends Properties("Prisoners Dilemma") {

}



A => B



Properties



Properties

Document: what is important?

Quality: they are always true



 property("The sucker always cooperates") = 
    forAll(strategyGen, Gen.posNum[Int]) { 
      (opponent: Strategy, turns: Int) => 
        val allMoves:Stream[MoveSet] =   
     Strategy.moves(Strategy.sucker, opponent).take(turns) 
         
        val myMoves = allMoves.map (_._1) 
!

        myMoves.forall(_ == Cooperate) 
  }



Complete properties

Incomplete properties

Relational properties



forAll { (list: List[Int] => 
  list.reverse.reverse = list 
}



forAll { (input: Input) => 
  oldWay(input) =? newWay(input) 
}



forAll { (output: Output) => 
  val input = from(output)   
  subject(input) ?= output 
}



 property("All games end within the time limit") = 
  forAll {  
  (rules: Rules, players: Seq[Player], limit: Duration) => 
   classify(players.size < 10, "small", "large") { 
    val timer = new Timer() 
    val output = Game.eachOnEach(rules)(sys, players, limit) 
    val timeTaken = timer.check 
    val timeOver = timeTaken - limit 
!

    classify (timeOver < (fudge/2), "comfortable", "barely") { 
     (timeTaken <= (limit + fudge)) :|  
          s"$timeTaken was longer than $limit" 
   }}} 
    





Properties

Document: what is important?

Design: what do we need to know?

Quality: they are always true

Enable: changes to less important bits



What does it make free?

What does it make explicit?

What does it make impossible?
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http://www.artima.com/shop/scalacheck
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https://github.com/jessitron/scalacheck-prisoners-dilemma


