Property Based lesting for Better Code

5] [&]
PR
O i

@jessitron mace“‘"

lOtS Of tests

maintenance burden

didn't test seams

Scala

ScalaCheck

Property Based lesting

Scala :

ScalaCheck

Property Based lesting

Define Success

Design

Documentation

Quality

Enable Change

Generators.

(Generators

(Generators

Document: what is valid input data’
Quality: automatic corner cases
Design: build up from components

Enable: tests of larger components

—naple: tests of larger components

Game

4z N
Rules # turns
Player Player
iStrategyj iStrategyj
_ /

Rules

case class Rules(temptationToDefect: Points,
rewardForMutualCooperation: Points,
punishmentForMutualDefection: Points,
suckersPenalty: Points)

object RuleTest extends Properties("Prisoners Dilemma'") {

property("The game 1s fair'") =
forAllL {(rules: Rules, moves: MoveSet) =>
val oneWay = Rules.score(rules, moves)

val theOtherWay = Rules.score(rules, moves.swap)

oneWay.swap == theOtherWay
}

object RuleTest extends Properties("Prisoners Dilemma'") {

property("Defection 1s always better for me'") =
forAll {(rules: Rules, theirMove: Move) =>
val 1fIDefect =
Rules.score(rules, (Defect, theirMove))._1
val 1fICooperate =
Rules.score(rules, (Cooperate, theirMove))._1

1ifIDefect > 1fICooperate
}

A=>B

Properties

Properties

Quality: they are always true

Document: what is important”?

property("The sucker always cooperates'") =
forAll(strategyGen, Gen.posNum[Int]) {
(opponent: Strategy, turns: Int) =>
val allMoves:Stream|[MoveSet]| =
Strategy.moves(Strategy.sucker, opponent).take(turns)

val myMoves = allMoves.map (_._1)

myMoves.forall(_ == Cooperate)

Complete properties
Incomplete properties

Relational properties

forAll { (list: List[Int] =>
list.reverse.reverse = list

}

forAlLLl { (input: Input) =>
oldWay (input) =7 newWay(input)
}

forAll { (output: Output) =>
val input = from(output)
subject(input) 7= output

}

forAll {
(rules: Rules, players: Seq[Player], Llimit: Duration) =>

i)

Properties

Quality: they are always true
Document: what is important”?
Enable: changes to less important bIts

Design: what do we need to know?

What does it make free?

What does it make explicit’?

What does it make impossible’?

Scala :

ScalaCheck

Property Based lesting

Property-based testing on the Java Platform

ScalaCheck

The Definitive Guide

artima Rickard Nilsson

http://www.artima.com/shop/scalacheck

https://githulb.com/jessitron/scalacheck-prisoners-dilemma

Op40
%Eﬂ? @jessitron ﬁﬁpacew

