
@jessitron

Property Based Testing for Better Code

lots of tests

maintenance burden

didn't test seams

Scala

ScalaCheck

Property Based Testing

Scala

ScalaCheck

Property Based Testing

Define Success

Design

Documentation

Quality

Enable Change

Generators Properties

Generators

Generators
Document: what is valid input data?

Design: build up from components

Quality: automatic corner cases

Enable: tests of larger components

Enable: tests of larger components

Game

Rules # turns

Player Player
Strategy Strategy

Rules

case class Rules(temptationToDefect: Points,
 rewardForMutualCooperation: Points,
 punishmentForMutualDefection: Points,
 suckersPenalty: Points)

 property("The game is fair") =
 forAll {(rules: Rules, moves: MoveSet) =>
 val oneWay = Rules.score(rules, moves)
 val theOtherWay = Rules.score(rules, moves.swap)
!

 oneWay.swap == theOtherWay
 }

object RuleTest extends Properties("Prisoners Dilemma") {

}

property("Defection is always better for me") =
 forAll {(rules: Rules, theirMove: Move) =>
 val ifIDefect =
 Rules.score(rules, (Defect, theirMove))._1
 val ifICooperate =
 Rules.score(rules, (Cooperate, theirMove))._1
!

 ifIDefect > ifICooperate
 }

object RuleTest extends Properties("Prisoners Dilemma") {

}

A => B

Properties

Properties

Document: what is important?

Quality: they are always true

 property("The sucker always cooperates") =
 forAll(strategyGen, Gen.posNum[Int]) {
 (opponent: Strategy, turns: Int) =>
 val allMoves:Stream[MoveSet] =
 Strategy.moves(Strategy.sucker, opponent).take(turns)

 val myMoves = allMoves.map (_._1)
!

 myMoves.forall(_ == Cooperate)
 }

Complete properties

Incomplete properties

Relational properties

forAll { (list: List[Int] =>
 list.reverse.reverse = list
}

forAll { (input: Input) =>
 oldWay(input) =? newWay(input)
}

forAll { (output: Output) =>
 val input = from(output)
 subject(input) ?= output
}

 property("All games end within the time limit") =
 forAll {
 (rules: Rules, players: Seq[Player], limit: Duration) =>
 classify(players.size < 10, "small", "large") {
 val timer = new Timer()
 val output = Game.eachOnEach(rules)(sys, players, limit)
 val timeTaken = timer.check
 val timeOver = timeTaken - limit
!

 classify (timeOver < (fudge/2), "comfortable", "barely") {
 (timeTaken <= (limit + fudge)) :|
 s"$timeTaken was longer than $limit"
 }}}

Properties

Document: what is important?

Design: what do we need to know?

Quality: they are always true

Enable: changes to less important bits

What does it make free?

What does it make explicit?

What does it make impossible?

Scala

ScalaCheck

Property Based Testing

http://www.artima.com/shop/scalacheck

@jessitron

https://github.com/jessitron/scalacheck-prisoners-dilemma

