
l e a n
software development

www.poppendieck.comMary Poppendieckmary@poppendieck.commary@poppendieck.com

Abstraction and Federation

From Micro Chips to Microservices

June 152 Copyright©2015 Poppendieck.LLC

1910 1943 1960 1964 19671950

1012 = One Trillion

l e a n

Hardware Scales by

Miniaturization and Abstraction

Miniaturization

Abstraction

June 153 Copyright©2015 Poppendieck.LLC

1975 LSI 11 2015 CoreTM M

40
years

l e a n

Does Software Scale

through Abstraction?

June 154 Copyright©2015 Poppendieck.LLC

1975 2015

Human-Centered Computing
Themes for the Future
Gerhard Fischer

Center for LifeLong
Learning & Design (L3D),
Department of Computer
Science and Institute of
Cognitive Science,
Univ. of Colorado, Boulder

Presented at Univ. of Milan,
February 2012

June 155 Copyright©2015 Poppendieck.LLC

1983 1993 2007 2015 +

l e a n

Software Scales by

Federation and Wide Participation
Federation

Minicomputer
 Local equipment control

(Isolation increases reliability)

PC
 Retail software packages

(Independent install and run)

Internet
 Websites

(Classic federated architecture)

Smartphone
 Apps

(Interact through the cloud)

Wide Participation

June 156 Copyright©2015 Poppendieck.LLC
Reputation Share Practices Education

Embedded

Servers

Services

Wearables

l e a n

Friction:

Large System Disease

“Everything in war is simple, but the simplest
thing is difficult. The difficulties accumulate and end
by producing a kind of friction that is inconceivable
unless one has experienced war.” --Carl von Clausewitz

June 157 Copyright©2015 Poppendieck.LLC

High Friction Low Friction

l e a n

The Problem with Databases

Monolithic Architecture Microservice Architecture

June 158 Copyright©2015 Poppendieck.LLC

Technology Platform

Database Deep Dependencies

High Friction

Microservices Federation

Low Friction

l e a n

Reduce Friction:

Monoliths Microservices

What is a Microservice?

1. Small service:

Does one thing well.

Independently Deployable.

2. Small team:

End-to-end Responsibility.

You build it – you monitor it – you fix it.

3. Practices:

No Central Databases.

Extensive Automation and Monitoring

Double Mock Contract Testing*

Smart Versioning Services.

Canary Releasing.
June 159 Copyright©2015 Poppendieck.LLC

Product

Data

Ops

Test
Design

Dev
Low Friction

*https://github.com/realestate-com-au/pact
*Beth Skurrie

l e a n

BUT

Microservices Risk

Avoiding Dependency Hell

1. Is it Right for the Domain?

a. Very high volumes seem to require microservices

2. Do You Understand the Domain?

a. Get the bounded contexts right before you start!

b. Refactoring across services is difficult

3. Maintain Strict Discipline

a. Interaction restricted to hardened interfaces

b. Service teams maintain situational awareness
of their service, its consumers, and its providers.

June 15 Copyright©2015 Poppendieck.LLC10

High Risk

l e a n

Limit Risk with

Situational Awareness

Consumer Provider

June 1511 Copyright©2015 Poppendieck.LLC

https://github.com/
realestate-com-au/pact

Request Response

M
ock

Does the Response
behave the same
as the Mock??

Request Response

PACT

M
oc

k

http://martinfowler.com/articles/consumerDrivenContracts.html

M
ock

Beth Skurrie
Limited Risk

l e a n

System of Systems

Cost to Develop & Operate Compared to Competitors

June 1512 Copyright©2015 Poppendieck.LLC

Design goals: 1) low cost, 2) high reliability, 3) highly maneuverability

Low FrictionLimited Risk

l e a n

The Gripen

Rapid DevelopmentIntegrated Federated Architecture

June 1513 Copyright©2015 Poppendieck.LLC

Limited Risk Lower Friction

l e a n

Strategies for Monoliths:

Pack Dependent Code into Containers

Packing Containers
1. Start with an important module.

2. Find its [major] dependencies.

3. Package related code into a container.

4. Repeat, refactoring to keep containers small.
.

Why Containers?

Portability
 Build once run anywhere

Consistency
 Configuration managed

by containers at runtime

Isolation
 Hardened containers

protect the contents

Easy of Use
 1 sec start up

 15 min learning curve

Utilization
 Many more apps/server

June 1514 Copyright©2015 Poppendieck.LLC

Server

Host OS

Hypervisor

Guest

OS

Bins

/Libs

Guest

OS

Guest

OS

App

A'

Bins

/Libs

Bins

/Libs

App

A

App

B

Server

Host OS

Docker Engine

Bins/LibsBins/Libs

App

A

App

A'

App

B

App

B'

App

B'

App

B'

App

B'

Virtualization Containers

Low Friction

Limited Risk

l e a n

Strategies for Monoliths:

One Thing We Know for Sure

For Complex Systems

This does not work

June 15 Copyright©2015 Poppendieck.LLC15

l e a n

Strategies for Monoliths:

One Thing We Know for Sure

For Complex Systems

This works

June 15 Copyright©2015 Poppendieck.LLC16

l e a n

Strategies for Monoliths:

Use Continuous Delivery

June 15 Copyright©2015 Poppendieck.LLC17

Acceptance test driven development process

Tight collaboration between business and delivery teams

Cross-functional teams include QA and operations

Automated build, testing, db migration, and deployment

 Incremental development on mainline with continuous integration

Software always production ready

Releases tied to business needs, not operational constraints

Credit: Jez Humble

Limited Risk

Low Friction

l e a n

Dev and Ops are Different

Safety-Focused Goals
(Prevention Focus)
Prevent Failure
 Is it safe?

 Find the safest option

Duty and Obligation
 Setbacks => redoubled efforts

 Praise => more relaxed efforts

Rewards
 Attention is for bad behavior

 Nothing going wrong (no loss)
is the ideal reward

Aspirational Goals
(Promotion Focus)
Create gains
 Let’s do it!

 Explore all the options

Aspirational Goals
 Praise => redoubled efforts

 Setbacks => discouragement

Rewards
 Attention is for good behavior

 Gains are the ideal reward

June 1518 Copyright©2015 Poppendieck.LLC

Regulatory Focus

Lower FrictionLimit Risk

l e a n

One Goal

Shared Responsibility

“The Business”

“The Product Guys”

“The Engineers”

“Operations”

“We Work Together”

“Nobody Succeeds Unless
Everyone Succeeds”

June 1519 Copyright©2014 Poppendieck.LLC
Not Me All of Us

Who is Responsible?

l e a n

The Military Model

Understand Command Intent

Two Levels Up

Command Intent:

A concise expression of the purpose of

the campaign, the desired results, and the

expected team progress toward achieving

the desired end state.

Maintain Situational Awareness

One Level Up

1. Collaborative Planning

2. Situational awareness of the

progress of other squads/platoons

3. Adapt to make sure the

company reaches the end state

June 1520 Copyright©2015 Poppendieck.LLC

l e a n

Maneuverability*

The ability to gain, shed,

or redirect momentum

really fast.

The ability to capitalize

on agility with flawless

execution.

June 15 Copyright©2015 Poppendieck.LLC21

* Thanks to Mike Nygard!
http://www.michaelnygard.com/blog/2015/04/manueverability/

Limited Risk

Low Friction

The most

maneuverable

competitor wins.

l e a n
software development

www.poppendieck.comMary Poppendieckmary@poppendieck.commary@poppendieck.com

Thank You!

For a copy of these slides, e-mail mary@poppendieck.com

