
Advanced Production Debugging

About Me

 Co-founder – Takipi, JVM Production Debugging.

 Director, AutoCAD Web & Mobile.

 Software Architect at IAI Aerospace.

 Coding for the past 16 years - C++, Delphi, .NET, Java.

 Focus on real-time, scalable systems.

 Blogs at blog.takipi.com

http://www.takipiblog.com

Overview

Dev-stage debugging is forward-tracing.

Production debugging is focused on backtracing.

Modern production debugging poses two challenges:

• State isolation.

• Data distribution.

Agenda

1. Logging at scale.

2. Preemptive jstacks

1. Extracting state with Btrace

1. Extracting state with custom Java agents.

Best Logging Practices

1. Code context.

2. Time + duration.

3. Transactional data (for async & distributed debugging).

A primary new consumer is a log analyzer. Context trumps content.

Transactional IDs

• Modern logging is done over a multi–threads / processes.

• Generate a UUID at every thread entry point into your app – the transaction ID.

• Append the ID into each log entry.

• Try to maintain it across machines – critical for debugging Reactive and microservice apps.

[20-07 07:32:51][BRT -1473 -S4247] ERROR - Unable to retrieve data for Job
J141531. {CodeAnalysisUtil TID: Uu7XoelHfCTUUlvol6d2a9pU}
[SQS-prod_taskforce1_BRT-Executor-1-thread-2]

1. Don’t catch exceptions within loops and log them (implicit and explicit).

For long running loops this will flood the log, impede performance and bring a server down.

void readData {

 while (hasNext()) {

 try {

 readData();

 }

 catch {Exception e) {

 logger.errror(“error reading “ X + “ from “ Y, e);

 }

}

2. Do not log Object.toString(), especially collections.

Can create an implicit loop. If needed – make sure length is limited.

Logging Performance

Thread Names

• Thread name is a mutable property.

• Can be set to hold transaction specific state.

• Some frameworks (e.g. EJB) don’t like that.

• Can be super helpful when debugging in tandem with jstack.

Thread Names (2)

For example:

Thread.currentThread().setName(

 Context + TID + Params + current Time, ...);

Before:

“pool-1-thread-1″ #17 prio=5 os_prio=31

tid=0x00007f9d620c9800 nid=0x6d03 in Object.wait()

[0x000000013ebcc000

After:

”Queue Processing Thread, MessageID: AB5CAD, type:

AnalyzeGraph, queue: ACTIVE_PROD, Transaction_ID: 5678956,

Start Time: 10/8/2014 18:34″ #17 prio=5 os_prio=31

tid=0x00007f9d620c9800 nid=0x6d03 in Object.wait()

[0x000000013ebcc000]

Modern Stacks - Java 8

Modern Stacks - Scala

Preemptive jstack

github.com/takipi/jstack

https://github.com/takipi/jstack
https://github.com/takipi/jstack
https://github.com/takipi/jstack

Preemptive jstack

• A production debugging foundation.

• Presents two issues –

– Activated only in retrospect.

– No state: does not provide any variable state.

• Let’s see how we can overcome these with preemptive jstacks.

”MsgID: AB5CAD, type: Analyze, queue: ACTIVE_PROD, TID:
5678956, TS: 11/8/20014 18:34 "
#17 prio=5 os_prio=31 tid=0x00007f9d620c9800 nid=0x6d03 in
Object.wait() [0x000000013ebcc000]

Jstack Triggers

• A queue exceeds capacity.

• Throughput exceeds or drops below a threshold.

• CPU usage passes a threshold.

• Locking failures / Deadlock.

Integrate as a first class citizen with your logging infrastructure.

BTrace

• An advanced open-source tool for extracting state from a live JVM.

• Uses a Java agent and a meta-scripting language to capture state.

• Pros: Lets you probe variable state without modifying / restarting the JVM.

• Cons: read-only querying using a custom syntax and libraries.

Usage

• No JVM restart needed. Works remotely.

• btrace [-I <include-path>] [-p <port>] [-cp <classpath>] <pid> <btrace-script> [<args>]

• Example: Btrace 9550 myScript.java

• Available at: kenai.com/projects/btrace

BTrace - Restrictions

• Can not create new objects.

• Can not create new arrays.

• Can not throw exceptions.

• Can not catch exceptions.

• Can not make arbitrary instance or static method calls - only the public static methods of

com.sun.btrace.BTraceUtils class may be called from a BTrace program.

• Can not assign to static or instance fields of target program's classes and objects. But,

BTrace class can assign to it's own static fields ("trace state" can be mutated).

• Can not have instance fields and methods. Only static public void returning methods are

allowed for a BTrace class. And all fields have to be static.

• Can not have outer, inner, nested or local classes.

• Can not have synchronized blocks or synchronized methods.

• can not have loops (for, while, do..while)

• Can not extend arbitrary class (super class has to be java.lang.Object)

• Can not implement interfaces.

• Can not contains assert statements.

• Can not use class literals.

Java Agents

• An advanced technique for instrumenting code dynamically.

• The foundation of modern profiling / debugging tools.

• Two types of agents: Java and Native.

• Pros: extremely powerful technique to collect state from a live app.

• Cons: requires knowledge of creating verifiable bytecode.

http://www.takipiblog.com/double-agent-java-vs-native-agents/

Agent Types

• Java agents are written in Java. Have access to the Instrumentation BCI API.

• Native agents – written in C++.

• Have access to JVMTI – the JVM’s low-level set of APIs and capabilities.

– JIT compilation, Garbage Collection, Monitor acquisition, Exception callbacks, ..

• More complex to write.

• Platform dependent.

http://www.takipiblog.com/how-to-write-your-own-java-scala-debugger/

Java Agents

github.com/takipi/debugAgent

https://github.com/takipi/debugagent
https://github.com/takipi/debugagent
https://github.com/takipi/debugagent

com.sun.tools.attach.VirtualMachine

Attach at startup: java -Xmx2G -agentlib:myAgent -jar myapp.jar start

To a live JVM using: com.sun.tools.attach.VirtualMachine Attach API.

ASMifying

ASM Bytecode Outline plug-in

takipi.com

blog.takipi.com

Questions?

mailto:Tal.weiss@takipi.com
http://www.takipi.com
http://www.takipi.com
http://www.takipiblog.com

