Functional Distributed Programming with Irmin
QCon NYC 2015, New York

Anil Madhavapeddy (speaker)
with Benjamin Farinier, Thomas Gazagnaire, Thomas Leonard
University of Cambridge Computer Laboratory

June 12, 2015

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

B Background
> Git in the datacenter
> Irmin, a large-scale, immutable, branch-consistent storage

B Weakly consistent data structures
> Mergeable queues
> Mergeable ropes

B Benchmarking Irmin

B Use Cases

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Background | Git in the datacenter

Common features every distributed system needs

e Persistence for fault tolerance and scaling
e Scheduling of communication between nodes
e Tracing across nodes for debugging and profiling

Most distributed systems run over an operating system, and so are
stuck with the OS kernel exerting control. We use unikernels, which
are application VMs that have complete control over their resources.

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

What if we just used Git?

o Persistence
e git clone of a shared repository across nodes
e git commit of local operations in the node

e Scheduling
e git pull to receive events from other nodes
e git push to publish events to other nodes

e Tracing and Debugging

e git log to see global operations
e git checkout to roll back time to a snapshot
e git bisect to locate problem messages

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Problems with using Git?

e Garbage Collection
o Git records all operations permanently, so our database will grow
permanently!
e git rebase is needed to compact history.

¢ Shell Control

o Calling the git command-line is slow and lacks fine control.

e Makes it hard to extend the Git protocol for additional features.
e Programming Model

o Git is designed for distributed source code manipulation.

e Built-in merge functions designed around text files.
e Let's use it for distributed data structures instead!

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Background Irmin, a large-scale, immutable, branch-consistent storage

Irmin, large-scale, immutable, branch-consistent storage

e Irmin is a library to persist and synchronize distributed data
structures both on-disk and in-memory

e |t enables a style of programming very similar to the Git workflow,
where distributed nodes fork, fetch, merge and push data between
each other

e The general idea is that you want every active node to get a local
(partial) copy of a global database and always be very explicit
about how and when data is shared and migrated

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Background Irmin, a large-scale, immutable, branch-consistent storage

Irmin Store

Tag Store

() Block Store

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Background Irmin, a large-scale, immutable, branch-consistent storage

type t =
(** User-defined contents. %)

type result = [
‘Ok of t

| “Conflict of string

] () ()
val merge: N e
old:t —- t — t — result RS
(x* 3-way merge functions. *) ?

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Demo: Distributed Logging

Multiple nodes all logging to a central store:

@ Design the logging data structure.

A log is a list of (string + timestamp)

When merging, the timestamps must be in increasing order
Equal timestamps can be in any order

With this logic, merge conflicts are impossible

® Every node clones the log repository
© A log is recorded locally, then pushed centrally.

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures

Weakly consistent data structures

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable queues

Mergeable queues

nil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable queues

module type IrminQueue.S = sig
type t
type elt
val create : unit — t

val length : t — int
val is_empty : t — bool

val push : t — elt — t
val pop : t — (elt * t)
val peek : t — (elt * t)

val merge : IrminMerge.t
end

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures

Mergeable queues

l:l Index

Node

CoEe

pop list

0%

no1 push list

N

i
I
I
I
I
I
I
I
I
I
I
! 1 1
| ! | no4
I
1 \
| il
I
I
I
I
I
I
v

\
1

\

S111511

nil Madhavapeddy (

e

with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable queues

N NS
[' ' C
i ' 2
\ . N B
B D T 1) <« F
NS o N
c (12) G
Pt
E
7
B D F
NS N
@ G

nil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable queues

Current state

Operation Read Write
Push 0 2 0(1)
Pop 2 on average 1 on average 0(1)
| Merge | n] 1 | O(n) |

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures | Mergeable queues

Current state

Operation Read Write
Push 0 2 Oo(1)
Pop 2 on average 1 on average 0(1)
] Merge | n 1 O(n)
With a little more work
Operation Read Write
Push 0 2 Oo(1)
Pop 2 on average 1 on average 0(1)
| Merge | log n | 1 | O(log n)

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable ropes

Mergeable ropes

nil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable ropes

module type IrminRope.S = sig
type t
type value (* e.g char x)
type cont (x e.g string *)

val create : unit — t

val make : cont — t

val set : t — int — value — t
val get : t — int — value

val insert : t — int — cont — t
val delete : t — int — int — t

val append : t — t — t
val split : t — int — (t * t)

val merge : IrminMerge.t
end

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures = Mergeable ropes

Operation Rope String
Set/Get O(log n) 0(1)
Split O(log n) 0(1)
Concatenate O(log n) O(n)
Insert O(log n) O(n)
Delete O(log n) O(n)

’ Merge ‘ log (f(n)) ‘ f(n) ‘

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable ropes

10
5/ \2
7N AN
2 2 do 1
ANVAY VA

lo rem ip sum et

10)

5/ \5
N "

VAN /N VA /N

lo rem ip sum do lor a

5 /\ 2)
7N SN
2 2 do &)
ANEEPAN JVAN
lo rem ip sum (3 met
VAN

sit a

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable ropes

5/ \2
7N SN
2 2 do 1
ANAN /\

lo rem ip sum et

5/\5 5/\

\\2/\
RN RN RN SN
2 2 2 1 2 2 do @
SN N SN N ANEVAN VAN

lo rem ip sum do lor a met lo rem ip sum (3) met

sit a

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable ropes

5/ \2
2/\2 d/\l
/NN /N

lo rem ip sum a met

5/\5 5/\

\\2/\
RN RN RN SN
2 2 2 1 2 2 do @
SN N SN N ANEVAN VAN

lo rem ip sum do lor a met lo rem ip sum 3 met
/N
sit a
5
2 2
/N /N

lo rem ip sum

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

10
5/
7N
2 2
VA VAN

lo rem ip sum

5/ \@
N T
VANV

VA /\

do lor a met

lo ip

5
7N
2 2
VA VAN

lo rem ip sum

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed

Weakly consistent data structures Mergeable ropes

\
1 /@\1

/N

a met

5/\@
2/ \2 d 4 \?'517
R R 4

VA
lo rem sum 3 met
VAN

sit

ip

a

Programming with Irmin

Weakly consistent data structures Mergeable ropes

10
5/
7N
2 2
VA VAN

lo rem ip sum

5/ \@
N T
VANV

VA /\

do lor a met

lo ip

5
7N
2 2
VA VAN

lo rem ip sum

\
1 /@\1

/N

a met

5/\@
2/ \2 d 4 \?'517
R R 4

VA
lo rem sum 3 met
VAN

sit

ip

a

2
VAN

do lor

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable ropes

5/ \@
2/ \2 1/\1

ANAN A

lo rem ip sum et

10 (10)

5/ \@ : / \@
2/ \2 2/ \1 2/ \2 d/ \?'517
/NN SN N VANEVAN VAN

lo rem ip sum do lor a met lo rem ip sum 3 met
VAN
sit a
5
2 2 2 @®
/N /N SN SN

lo rem ip sum do lor (3) met

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable ropes

10
5 /
N
2 2
VANEVAN
lo rem ip sum
10
5 / \@
RN SN
2 2 2 1
SN NN /N
lo rem p sum

do lor a met

5
7N
2 2
VA VAN

lo rem ip sum

\
1 /@\1

A

et

2
/N

lo rem

5)
SN
2 @
SN SN

do lor (3 met

5/“’/\
7\

10)

©)

SN

2 do (4)

/N PVANN

ip sum (3 met
VAN

sit a

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable ropes

/\
/\ d/\1
ANPA /\

lo rem ip sum a met

5/\5 5/\2

RN RN VRN 7N

2 2 2 1 2 2 do @
AN VA AN ANVAN VAN
lo rem ip sum do lor a met lo rem ip sum 3 met

/N

sit a

/ \
/ \ / \
/ \ / \ / \ / \

lo rem ip sum do lor ‘\3‘ met

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Weakly consistent data structures Mergeable ropes

10
5/ \2
RN RN
2 2 do 1
1/ NN /N
10 (10)

5/ \5 5/ \2
RN VRN N SN
2 2 2 1 2 2 do @)

/N AN VAN /\ ANTA VAN

lo rem ip sum do lor a lo rem 1p sum \\3 . met
, A
/ 10 \ sit a
5 5)
7N 7N
2 2 2 (5]
VAN /N SN N

lo rem ip sum do lor (3) met

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Benchmarking Irmin

Benchmarking Irmin

nil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Benchmarking Irmin

500000

400000

300000

200000

100000 -

Time spent for whole operations (us)

0 | I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of push/pop successively applied

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Benchmarking Irmin

module ObjBackend = struct
type t = unit
type key = K.t
type value = V.t
let create () = return ()
let clear () = return ()

let add t value =
return (0Obj.magic (0Obj.repr value))

let read t key =
return (0bj.obj (Obj.magic key))

let mem t key = return true

end

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Benchmarking Irmin

500 T T T T T T T T
- Core ——
3 Obj ——
@ 400 tMemory —— -
S GitMem ——
o GitDsk ———
2
o 300 - -
o
[°)
E
5 200 -
€
@
&
o 100 -
E
-

0 1 | | | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of push/pop successively applied

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Use Cases

nil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Demo: Dog, a loyal synchronization tool

Command line interface to logging clients at
https://github.com/samoht/dog

@ dog listen to setup the server listener

e Server maintains list of clients in a subtree
o It regularly merges all clients in parallel to master branch

@® dog init starts up a client logger
© dog push syncs the client with the server

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

https://github.com/samoht/dog

Demo: CueKeeper, an Irmin TODO manager

Do Git programming in the browser
https://github.com/talex5/cuekeeper
http://test.roscidus.com/CueKeeper/

@ Irmin is written in OCaml, and compiles to efficient JavaScript

o Git objects are mapped into IndexedDB
e Uses LocalStorage to sync between tabs

® DOM elements are computed from the Git store (a React-like
model)

© Client has full history, snapshotting and custom merge logic.

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

https://github.com/talex5/cuekeeper
http://test.roscidus.com/CueKeeper/

Demo: XenStore TNG

The Xen hypervisor toolstack
https://www.youtube.com/watch?v=DSzvFwIVmbs

@ Xen is a widely deployed hypervisor (Amazon EC2, Rackspace
Cloud, ...)

e Every VM boot needs a lot of communication
e Tracing when something goes wrong is hard
e Programming model is quite reactive
® Dave Scott from Citrix ported the core toolstack to use Irmin,
and made it faster!

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

https://www.youtube.com/watch?v=DSzvFwIVm5s

Why OCaml?

e Let us prototype complex functional datastructures very quickly

e Efficient compilation to native code (x86, ARM, PowerPC,
Sparc, ...), unikernels (MirageOS), JavaScript and Java

e Execution model is strict and predictable, important for
systems programming

¢ Native code compilation is statically linked, or can be used as a
normal shared library

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

Irmin Status (“Not Entirely Insane”)

e Still pre 1.0, but several useful datastructures such as
distributed queues and efficient ropes.

e HTTP REST for remote clients, library via OCaml, or
command-line interface.

e Bidirectional operation, so git commits map to Irmin commits
from any direction.

e Open source at https://irmin.io, installable via the OPAM
package manager at https://opam.ocaml.org

e Feedback welcome at
mirageos-devel@lists.xenproject.org or
https://github.com/mirage/irmin/issues

Anil Madhavapeddy (speaker) with Benjamin FariFunctional Distributed Programming with Irmin

https://irmin.io
https://opam.ocaml.org
https://github.com/mirage/irmin/issues

	Background
	Git in the datacenter
	Irmin, a large-scale, immutable, branch-consistent storage

	Weakly consistent data structures
	Mergeable queues
	Mergeable ropes

	Benchmarking Irmin
	Use Cases

