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For more information

= hitp://microservices.io

» hitp://github.com/cer/microservices-examples/

= hitps://github.com/cer/event-sourcing-examples

= hitp://plaincldobjects.com/

= https://twitter.com/crichardson

= hitp://eventuate.io/
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Agenda

Why event sourcing?
Designing a domain model based on event sourcing
Event sourcing and service design

Microservices and event sourcing
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Traditional monolithic
architecture

oo

WAR/EAR
Spring MVC
HTM L .....................................................................
nasssses REST/JSON faces Accoumnts
) —_— ;
Client balancer Spring
Transfers .
Hibernate

Customers

Tomcat

RDBMS
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MARTIN L. ABBOTT MICHAEL T. FISHER
ONEAD 1 868 S8 e e 30

Y axis -
functional
decomposition

Scale by
splitting
different things

X axis
- horizontal duplication @crichardson




Today: use a microservice, polyglot
architecture

Standalone
Banking Ul Services
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Money Transfer Management

Account Management Service .
Service
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NoSQL DB Sharded SQL




Sut now we have
distributed data management
problems




—xample: Money transfer

Account Management Money Transfer
Service Management Service
Account NoSQL Money Transfer

Database Database
Account #1 NO Money Transfer
ACID
Account #2

No 2PC
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Use an event-driven
architecture

= Services publish events when state changes
= Services subscribe to events and update their state

= Maintain eventual consistency across multiple aggregates
(in multiple datastores)

x Synchronize replicated data
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Eventually consistent money transfer

transferMoney()

|

Money TransferService

Ad
Ad

A

Money Transfer
fromAccountld = 101
toAccountld = 202

amount = 55
state = COMPLETED

Subscribes to:

rcountDebitedEvent

rcountCreditedEvent publishes:

DebitRecordedEvent

MoneyTransferCreate

AccountService

Account
id =101

balance = 195

Subscribes to“

MoneyTransferCreatedEvent

Message Bus

Account
id = 202

balance = 180

Publishes:

AccountDebitedEvent
AccountCreditedEvent




How to
atomically
update the database
and
publish an event
without 2PG?
(dual write problem)
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—vent sourcing

= [For each aggregate;
= |dentify (state-changing) domain events
= Define Event classes

= For example,

= Account: AccountOpenedEvent, AccountDebitedEvent,
AccountCreditedEvent

x ShoppingCart; ltemAddedEvent, ltemRemovedEvent,
OrderPlacedEvent
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Persists events
NOT current state

Account

balance

open(initial)
debit(amount)
credit(amount)

Account table

101

Event table

101 901 AccountOpened

101 902 AccountCredited

101 903 AccountDebited

450

500

250

300
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Replay events to recreate state

Events

AccountOpenedEvent(balance)
AccountDebitedEvent(amount)
AccountCreditedEvent(amount)

Account

balance
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Two actions that must be atomic

Sefore: update state + publish
events

Now: persist (and publish)
events

Single action that can be
done atomically




Optimizing using snapshots

= Most aggregates have relatively few events

= BUT consider a 10-year old Account = many transactions

= [herefore, use snapshots:
= Periodically save snapshot of aggregate state
= Typically serialize a memento of the aggregate

= | oad latest snapshot + subsequent events
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Request handling in an event-sourced application

Microservice A
pastEvents = findEvents(entityld)

new()

applyEvents(pastEvents)

HTTP Account Event

Handler
newEvents = processCmd(SomeCmad) Store

savekEvents(newEvents) (optimistic locking)




Event Store publishes events -
consumed by other services

Microservice B

---------------------------------------------------------------------------------------------------------------------

subscribe(E\E/entTypes) update()
| Aggregate
publishéevent)
i Event
Event |
Subscriber
Store ,
et update()
publishievent) NoSQL
E materialized
view =
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About the event store

= Hybrid database and message broker
= Retrieve events for an aggregate
= Append to an aggregates events
= Subscribe to events
= Fvent store implementations:;
= Home-grown/DIY.

= geteventstore.com by Greg Young

= My event store - bit.ly/trialeventuate
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Business benefits of event
sourcing

= Built-in, reliable audit log

Enables temporal queries

Publishes events needed by big data/predictive analytics etc.

Preserved history = More easily implement future requirements
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Technical benefits of event
sourcing

= Solves data consistency. issues in a Microservice/NoSQL -based
architecture:

= Atomically save and publish events

= Fvent subscribers update other aggregates ensuring eventual
consistency

= Fvent subscribers update materialized views in SQL and
NoSQL databases (more on that later)

= Fliminates O/R mapping problem

@)crichardson




Drawbacks of event sourcing

= \Weird and unfamiliar

= Fvents = a historical record of your bad design decisions
= Handling duplicate events can be tricky

= Application must handle eventually consistent data

= Fvent store only directly supports PK-based lookup (more on
that later)

@)crichardson




Agenda

Why event sourcing?
Designing a domain model based on event sourcing
Event sourcing and service design

Microservices and event sourcing
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Use the familiar building blocks
of DDD

= Entity

= \/alue object

x Services With some
differences

= Repositories

= Aggregates




Partition the
domain model

INnto Aggregates




Aggregate design

= Graph consisting of a root Order
entity and one or more other
entities and value objects

customerld
= Fach core business entity =
Aggregate: e.g. customer,
Account, Order, Product, .... / \
= Reference other aggregate Orizrrhlne Address
roots via primary key
= Often contains partial copy quantity street
of other aggregates’ data oroductld City
productName

productPrice




Aggregate granularity Is
important

= [ransaction = processing one command by one aggregate

= No opportunity to update multiple aggregates within a
transaction

= |f an update must be atomic (i.e. no compensating transaction)
then it must be handled by a single aggregate

= ©.g. scanning boarding pass at security checkpoint or when
entering jetway
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Aggregate granularity

Forum moderator

s

User

author
Post

Consistency

Forum maoderator

Forum maoderaior

ogss

| S
J User

oot
3
pat
author
Post

Scalability/
User experience
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ES-based Aggregate design

class Account {

ClaSS|C’ var balance : Money;
mutable def debit(amount : Money) {

: balance = balance - amount
domain model .

Event centric,
immutable

case class Account(balance : Money) {
def processCommand(cmd : Command) : Seq[Event] = ??°?
def applyEvent(event : Event) : Account = ..

}

case class DebitCommand (amount : Money)
case class AccountDebitedEvent (amount : Money)

@)crichardson




Designing domain events

» Record state changes for an
aggregate

= Part of the public APl of the
domain model ProductAddedToCart

id : TimeUUID
productld
productName
productPrice
shoppingCartld




Designing commands

Created by a service from incoming request

Processed by an aggregate

Immutable

= Contains value objects for
= \/alidating request

= Creating event

= Auditing user activity

@)crichardson




Events and Commands

trait MoneyTransferEvent extends Event

case class MoneyTransferCreatedEvent(details : TransferDetails) extends MoneyTransferEvent
case class DebitRecordedEvent(details : TransferDetails) extends MoneyTransferEvent

case class CreditRecordedEvent(details : TransferDetails) extends MoneyTransferEvent

case class TransferFailedDueToInsufficientFundsEvent() extends MoneyTransferEvent

object MoneyTransferCommands {

sealed trait MoneyTransferCommand extends Command

case
case
case
case

class
class
class
class

CreateMoneyTransferCommand(details : TransferDetails) extends MoneyTransferCommand
RecordDebitCommand(accountId : EntityId) extends MoneyTransferCommand
RecordDebitFailedDueToInsufficientFundsCommand(accountId : EntityId) extends MoneyTransferCommand
RecordCreditCommand(accountId : EntityId) extends MoneyTransferCommand

case class TransferDetails(fromAccountId : EntityId, toAccountId : EntityId, amount : BigDecimal)

@)crichardson



Hybrid OO/FP domain objects




OO0 = State + Behavior

Account

State balance

processCommand(cmd : Command) : Seq[Events]

Behavior applyEvent(event : Event) : Account

@)crichardson




Aggregate traits

Used by
Event Store to
reconstitute
aggregate

trait Aggregate[T] { self

Apply event returning
updated Aggregate

=

def applyEvent(event : Event) : T

'trait CommandProcessingAggregate[T, -CT] extends Aggregate[T] { self
: CT) : SeqlEvent]

def processCommand(command

by

Map Command to Events

@crichardson
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Account - command processing

case class Account(balance : BigDecimal)
extends PatternMatchingCommandProcessingAggregate[Account, AccountCommand] {

def this() = this(null)

Prevent
def processCommand = {

case OpenAccountCommand(initialBalance) => overdraft
Seq(AccountOpenedEvent (initialBalance))

case CreditAccountCommand(amount, transactionId) =>
Seq(AccountCreditedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId) if amount <= balance =>

Seq(AccountDebitedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId) =>
Seq(AccountDebitFailedDueToInsufficientFundsEvent(amount, transactionId))

@crichardson




Account - applying events

case class Account(balance : BigDecimal)
extends PatternMatchingCommandProcessingAggregate[Account, AccountCommand] {

def this() = this(null)
Immutable
def applyEvent = {

case AccountOpenedEvent(initialBalance) => copy(balance = initialBalance)

case AccountDebitedEvent(amount, _) => copy(balance = balance - amount)

case AccountCreditedEvent(amount, _) =>
copy(balance = balance + amount)

case AccountDebitFailedDueToInsufficientFundsEvent(amount, _) =>
this

@crichardson




Event Store API

EventStore {

save [T <: Aggregate[T]] (entity: T, events: Seq[Event],
assignedId : Option[EntityId] = None): Future[EntityWithIdAndVersion[T]]

update [T <: Aggregate[T]] (entityIdAndVersion : EntityIdAndVersion,
entity: T, events: Seqg[Event]): Future[EntityWithIdAndVersion[T] ]

find[T <: Aggregate[T] : ClassTag] (entityId: EntityId)
Future[EntityWithIdAndVersion[T]]

findOptional [T <: Aggregate[T] : ClassTag] (entityId: EntityId)
Future[Option[EntityWithIdAndVersion[T]]]

subscribe (subscriptionId: SubscriptionId) :
Future [AcknowledgableEventStream]

@crichardson




FP-style domain objects




-P = Separation of State and
Sehavior

Account AccountAggregate

balance processCommand(Account, Command) : Seq[Events]

applyEvent(Account, Event) : Account

State

Behavior

@)crichardson




Aggregate type classes/implicits

trait Aggregate[T] {

def newInstance() : T
Used by

def applyEvent(aggregate : T, event : Event) : T Event Store to
reconstitute
aggregate

}

trait CommandProcessingAggregate[T] extends Aggregate[T] {
def processCommand(aggregate : T, command : Command) :
Seq[Event]

@)crichardson




Functional-style Account Aggregate

case class Account(balance: BigDecimal) Behavior

implicit object AccountAggregate
extends CommandProcessingAggregate[Account] with ModifierBasedAggregate[Account] {

def newInstance() = Account(null)

override def processCommand(account: Account, command: Command): Seq[Event] =
command match {
case OpenAccountCommand(initialBalance) =>
Seq(AccountOpenedEvent (initialBalance))

case CreditAccountCommand(amount, transactionId) =>
Seq(AccountCreditedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId)
if amount <= account.balance =>
Seq(AccountDebitedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId) =>
Seq(AccountDebitFailedDueToInsufficientFundsEvent(amount, transactionId))




Functional-style Account Aggregate

implicit object AccountAggregate Behavior
extends CommandProcessingAggregate[Account] with ModifierBasedAggregate[Account] {

def newInstance() = Account(null)

override def processCommand(account: Account, command: Command): Seq[Event] =
command match {...}

val lenser = Lenser[Account]
val _balance = lenser(_.balance)

override def modifier = {
case AccountOpenedEvent(initialBalance) => _balance.set(initialBalance)
case AccountDebitedEvent(amount, _) => _balance.modify(_ — amount)
case AccountCreditedEvent(amount, _) => _balance.modify(_ + amount)
case AccountDebitFailedDueToInsufficientFundsEvent(amount, _) => unchanged

by
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FP-style event store

Enables inference of
T, and EV

EventStore {

save[T, EV <: Event](clasz : Class[T], events: Seq[EV], assignedId: Option[EntityId] = None, triggeringEvent: Option[ReceiptHandle] = None
(implicit ag : Aggregate[T, EV]) :
Future[EntityIdAndVersion]

update[T, EV <: Event](clasz : Class[T], entityIdAndVersion: EntityIdAndVersion, events: Seq[Event], triggeringEvent: Option[ReceiptHandle
(implicit ag : AggregatelT, EV]) :
Future[EntityIdAndVersion]

find[T, EV <: Event](clasz : Class[T], entityId: EntityId)
(implicit ag : Aggregate[T, EV]): Futurel[EntityWithMetadatalT, EVI]]

findOptionall[T, EV <: Eventl(clasz : Class[T], entityId: EntityId)
(implicit ag : Aggregate[T, EV]): Future[Option[EntityWithMetadatalT, EV]]]

Tells ES how to instantiate
aggregate and apply events

Strategy

@)crichardson




Haskell aggregate

class Aggregate s where

data Error s :: *

data Command s :: *

data Event s :: *

execute :: s -> Command s -> Either (Error s) (Event s)
apply :: s -> Event s -> s

seed :: s

https://gist.github.com/Fristi/ 7327904

data EventData e = EventData {
eventld :: Int,
body :: Event e

load :: (Aggregate a) => [EventData a] -> a
load = foldl folder seed
where
folder state = apply state . body

@)crichardson




Haskell Ticlacloe aggregate

data Game = Game {
state :: GameState
} deriving (Show, Eq)

instance Aggregate Game where
data Error Game = NoValidMove deriving (Show, Eq)
data Event Game = GameCreated
| MoveMade Int
| GameWon
| GameTied deriving (Show, Eq)
data Command Game = CreateGame | MakeMove Int deriving (Show, Eq)
— execute’ CreateGame = Right GameCreated
Game state “execute’ MakeMove k =
case makeMove k state of

Nothing -> Left NoValidMove
Just -> Right (MoveMade k)

state “apply’ GameCreated = state
s ‘apply’ MoveMade k = s { state = fromJust $ makeMove k (state s) }

state “apply’ GameWon = state
state “apply’ GameTied = state

seed = Game initialGameState

@)crichardson




JavaScript aggregate

function Account(){
(!(this Account)) Account();
this.entityTypeName - entityTypeName;
this.balance - 9;
}

Account.prototype.applyEvent = function (event) {
var eventType = event.eventType;

(eventType){
AccountOpenedEvent:
this.balance - event.eventData.initialBalance;
H
AccountDebitedEvent:
this.balance event.eventData.amount;

Account.prototype.processCommand = function (command) {

(command. commandType) {
CreateAccountCommand:
[{
eventType: AccountOpenedEvent,
eventData: {
initialBalance: command.initialBalance,
customerId: command.customerId,
title: command.title
}
}1;

’
Nphi+A~rru=+Command -
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Designing a domain model based on event sourcing
Event sourcing and service design

Microservices and event sourcing
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Designing senvices

Responsibilities and collaborations
= |nvoked by adapter, e.g. HTTP controller
= Creates a Command

= Selects new aggregate or existing aggregate to process command

Load aggregate from same bounded context, e.g. Add a Post to a Forum - load forum

LL.oad data from another other bounded context, e.g. addProductToCart()
= Requests Productinfo from ProductService

= |nvokes PricingService to calculate discount price

Sometimes loads target aggregate before creating command

= ¢.g. addProductToCart() needs contents of shopping cart to calculate discounted
price of product to add

@)crichardson




Money transter example

Story

As a customer of the bank

| want to transfer money between two bank accounts
So that | don't have to write a check

Scenario

Given that my open savings account balance is $150
Given that my open checking account balance is $10
When | transfer $50 from my savings account

to my checking account
Then my savings account balance is $100
Then my checking account balance is $60
Then a Money Transfer was created

Pre
conditions

Post
conditions

@)crichardson




Old-style ACID...

public class MoneyTransferServiceImpl ..{

private final AccountRepository accountRepository;
private final MoneyTransferRepository moneyTransferRepository;

@Pransacticonal
public MoneyTransfer transfer (
String fromAccountId, String toAccountId,
double amount) throws MoneyTransferException {
Account fromAccount =
accountRepository.findAccount (fromAccountId) ;
Account toAccount =
accountRepository.findAccount (toAccountId) ;
// .. Verify accounts are open ..
FremMACCcolnE ldehiitE (ameuni) ;
tOACEOURTE , CirEell € (Zmoumnie ) s
return moneyTransferRepository.createMoneyTransfer (
LIEOMACCOUINE ; TOACCOUNE, EMeumniE) 5
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... becomes eventually
consistent (BASE)

public MoneyTransfer transfer () {
.. Creates MoneyTransfer ..

= Updating multiple aggregates
= multi-step, event-driven flow J

= each step updates one

Aggregate
= Service creates saga to Money
coordinate workflow Transfer

= Post-conditions eventually true

= A state machine create redited
= Part of the domain, e.g. debited debit
M Ti f t
oneyTransfer aggregate recorded
= OR Synthetic aggregate
To

From
Account Account




Need compensating
transactions

= Pre-conditions might be false when attempting to update an
aggregate

= For example: an account might be closed transferring money:

= from account when debiting = stop transfer
» [0 gaccount = reverse the debit

= from account when attempting reversal = bank wins!

@)crichardson




Money TransferService Bl

class MoneyTransferService(implicit eventStore: EventStore) {

def transferMoney(transferDetails: TransferDetails, accountService: AccountService) =
accountService. findAccountById(transferDetails.fromAccountId) zip
accountService.findAccountById(transferDetails. fromAccountId) flatMap {
case (fromAccount, toAccount) =>
if (!fromAccount.open)
throw new AccountClosedException()
if (!toAccount.open)
throw new AccountClosedException()
newEntity[MoneyTransfer] <== CreateMoneyTransferCommand(transferDetails)

DSL concisely specifies:
1.Creates Account aggregate
2.Processes command
3.Applies events

4.Persists events

@)crichardson




Event handling in Account

Triggers BeanPostProcessor Durable subscription name

@EventSubscriber(id = "accountEventHandlers")
class TransferWorkflowAccountHandlers(eventStore: EventStore) extends CompoundEventHandler {

implicit val es = eventStore

@EventHandlerMethod
val performDebit =
handlerForEvent [MoneyTransferCreatedEvent] { de =>
existingEntity[Account] (de.event.details.fromAccountId) <==
DebitAccountCommand(de.event.details.amount, de.entityId)
}

@EventHandlerMethod
val performCredit = handlerForEvent [DebitRecordedEvent] { de =>
existingEntity[Account] (de.event.details.toAccountId) <==
CreditAccountCommand(de.event.details.amount, de.entityId)

1.Load Account aggregate
2.Processes command
3.Applies events

4 .Persists events

@crichardson




JavaScript service

AccountService.prototype.createAccount function (initialBalance, customerId, title, callback){
var command = { commandType: Account.CreateAccountCommand, initialBalance: initialBalance, customerId: customerId, title: title };

this.esUtil.createEntity(Account.Account, command, callback);
};

@)crichardson
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—vent Store only sup
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—S+CQRS-based
MICroServices architecture

Updates Queries
A t (Denormalized)
Command-side Query-side

Events Events

Event Store




Modular domain model

Forum moderator Forum v_moderator
User User
sssss i
Post author Do autnor
Tightly coupled Loosely coupled aggregates
ACID Eventually consistent
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Monolithickirst approach
WAR/EAR

Forum _moderator

User
“ author

Post

Tomcat

Not entirely free though -
EVQM& SOMT‘ﬁLV\S T‘Q.W\E«MW\ @crichardson




But no

Big Ball of Mud to
untangle




Microservices deployment

WAR/EAR WAR/EAR WAR/EAR
Forum Post User
Tomcat Tomcat Tomcat

Much Mgher -
WLETOSEr VILEe S pr&mmm
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Summary.

Event sourcing solves a variety of problems in modern
application architectures

Scala is a great language for implementing ES-based domain
models:

= (Case classes

= Pattern matching

= Recreating state = functional fold over events
But Java, JavaScript and Haskell work too!

ES-based architecture = flexible deployment

@)crichardson




» @crichardson chris@chrisrichardson.net

http://plainoldobjects.com http://microservices.io




