Chris Richardson

Author of POJOs in Action
Founder of the original CloudFoundry.com

» @crichardson
chris@chrisrichardson.net
http://plainoldobjects.com
http://microservices.io

QCon
@)crichardson NEW YORK

Presentation goal

How to develop functional
domain models based on event
sourcing

About Chris

& HP0JOs
% INACTION

Consultant &
Founder of Eventuate.lO

@)crichardson

For more information

= hitp://microservices.io

» hitp://github.com/cer/microservices-examples/

= hitps://github.com/cer/event-sourcing-examples

= hitp://plaincldobjects.com/

= https://twitter.com/crichardson

= hitp://eventuate.io/

@)crichardson

Agenda

Why event sourcing?
Designing a domain model based on event sourcing
Event sourcing and service design

Microservices and event sourcing

@)crichardson

Traditional monolithic
architecture

oo

WAR/EAR
Spring MVC
HTM L ...
nasssses REST/JSON faces Accoumnts
) —_— ;
Client balancer Spring
Transfers .
Hibernate

Customers

Tomcat

RDBMS

@crichardson

SU

' large and/or comp

[T]

onolithic application

Trouble!

exX

Using a single

=D

SMS has its
imitations

Apply the scale cube

MARTIN L. ABBOTT MICHAEL T. FISHER
ONEAD 1 868 S8 e e 30

Y axis -
functional
decomposition

Scale by
splitting
different things

X axis
- horizontal duplication @crichardson

Today: use a microservice, polyglot
architecture

Standalone
Banking Ul Services

E S s E

Money Transfer Management

Account Management Service .
Service

(]
(]
(]
(]
(]
(]
(]
:
Account |
Database Money Transfer Database '
(]
(]
(]
]
(]
(]
(]
]
]
]

NoSQL DB Sharded SQL

Sut now we have
distributed data management
problems

—xample: Money transfer

Account Management Money Transfer
Service Management Service
Account NoSQL Money Transfer

Database Database
Account #1 NO Money Transfer
ACID
Account #2

No 2PC

@)crichardson

Use an event-driven
architecture

= Services publish events when state changes
= Services subscribe to events and update their state

= Maintain eventual consistency across multiple aggregates
(in multiple datastores)

x Synchronize replicated data

@)crichardson

Eventually consistent money transfer

transferMoney()

|

Money TransferService

Ad
Ad

A

Money Transfer
fromAccountld = 101
toAccountld = 202

amount = 55
state = COMPLETED

Subscribes to:

rcountDebitedEvent

rcountCreditedEvent publishes:

DebitRecordedEvent

MoneyTransferCreate

AccountService

Account
id =101

balance = 195

Subscribes to“

MoneyTransferCreatedEvent

Message Bus

Account
id = 202

balance = 180

Publishes:

AccountDebitedEvent
AccountCreditedEvent

How to
atomically
update the database
and
publish an event
without 2PG?
(dual write problem)

@crichardson

—vent sourcing

= [For each aggregate;
= |dentify (state-changing) domain events
= Define Event classes

= For example,

= Account: AccountOpenedEvent, AccountDebitedEvent,
AccountCreditedEvent

x ShoppingCart; ltemAddedEvent, ltemRemovedEvent,
OrderPlacedEvent

@)crichardson

Persists events
NOT current state

Account

balance

open(initial)
debit(amount)
credit(amount)

Account table

101

Event table

101 901 AccountOpened

101 902 AccountCredited

101 903 AccountDebited

450

500

250

300

crichardson

Replay events to recreate state

Events

AccountOpenedEvent(balance)
AccountDebitedEvent(amount)
AccountCreditedEvent(amount)

Account

balance

@)crichardson

Two actions that must be atomic

Sefore: update state + publish
events

Now: persist (and publish)
events

Single action that can be
done atomically

Optimizing using snapshots

= Most aggregates have relatively few events

= BUT consider a 10-year old Account = many transactions

= [herefore, use snapshots:
= Periodically save snapshot of aggregate state
= Typically serialize a memento of the aggregate

= | oad latest snapshot + subsequent events

@)crichardson

Request handling in an event-sourced application

Microservice A
pastEvents = findEvents(entityld)

new()

applyEvents(pastEvents)

HTTP Account Event

Handler
newEvents = processCmd(SomeCmad) Store

savekEvents(newEvents) (optimistic locking)

Event Store publishes events -
consumed by other services

Microservice B

subscribe(E\E/entTypes) update()
| Aggregate
publishéevent)
i Event
Event |
Subscriber
Store ,
et update()
publishievent) NoSQL
E materialized
view =

@)crichardson

About the event store

= Hybrid database and message broker
= Retrieve events for an aggregate
= Append to an aggregates events
= Subscribe to events
= Fvent store implementations:;
= Home-grown/DIY.

= geteventstore.com by Greg Young

= My event store - bit.ly/trialeventuate

@)crichardson

Business benefits of event
sourcing

= Built-in, reliable audit log

Enables temporal queries

Publishes events needed by big data/predictive analytics etc.

Preserved history = More easily implement future requirements

@)crichardson

Technical benefits of event
sourcing

= Solves data consistency. issues in a Microservice/NoSQL -based
architecture:

= Atomically save and publish events

= Fvent subscribers update other aggregates ensuring eventual
consistency

= Fvent subscribers update materialized views in SQL and
NoSQL databases (more on that later)

= Fliminates O/R mapping problem

@)crichardson

Drawbacks of event sourcing

= \Weird and unfamiliar

= Fvents = a historical record of your bad design decisions
= Handling duplicate events can be tricky

= Application must handle eventually consistent data

= Fvent store only directly supports PK-based lookup (more on
that later)

@)crichardson

Agenda

Why event sourcing?
Designing a domain model based on event sourcing
Event sourcing and service design

Microservices and event sourcing

@)crichardson

Use the familiar building blocks
of DDD

= Entity

= \/alue object

x Services With some
differences

= Repositories

= Aggregates

Partition the
domain model

INnto Aggregates

Aggregate design

= Graph consisting of a root Order
entity and one or more other
entities and value objects

customerld
= Fach core business entity =
Aggregate: e.g. customer,
Account, Order, Product, / \
= Reference other aggregate Orizrrhlne Address
roots via primary key
= Often contains partial copy quantity street
of other aggregates’ data oroductld City
productName

productPrice

Aggregate granularity Is
important

= [ransaction = processing one command by one aggregate

= No opportunity to update multiple aggregates within a
transaction

= |f an update must be atomic (i.e. no compensating transaction)
then it must be handled by a single aggregate

= ©.g. scanning boarding pass at security checkpoint or when
entering jetway

@)crichardson

Aggregate granularity

Forum moderator

s

User

author
Post

Consistency

Forum maoderator

Forum maoderaior

ogss

| S
J User

oot
3
pat
author
Post

Scalability/
User experience

@)crichardson

ES-based Aggregate design

class Account {

ClaSS|C’ var balance : Money;
mutable def debit(amount : Money) {

: balance = balance - amount
domain model .

Event centric,
immutable

case class Account(balance : Money) {
def processCommand(cmd : Command) : Seq[Event] = ??°?
def applyEvent(event : Event) : Account = ..

}

case class DebitCommand (amount : Money)
case class AccountDebitedEvent (amount : Money)

@)crichardson

Designing domain events

» Record state changes for an
aggregate

= Part of the public APl of the
domain model ProductAddedToCart

id : TimeUUID
productld
productName
productPrice
shoppingCartld

Designing commands

Created by a service from incoming request

Processed by an aggregate

Immutable

= Contains value objects for
= \/alidating request

= Creating event

= Auditing user activity

@)crichardson

Events and Commands

trait MoneyTransferEvent extends Event

case class MoneyTransferCreatedEvent(details : TransferDetails) extends MoneyTransferEvent
case class DebitRecordedEvent(details : TransferDetails) extends MoneyTransferEvent

case class CreditRecordedEvent(details : TransferDetails) extends MoneyTransferEvent

case class TransferFailedDueToInsufficientFundsEvent() extends MoneyTransferEvent

object MoneyTransferCommands {

sealed trait MoneyTransferCommand extends Command

case
case
case
case

class
class
class
class

CreateMoneyTransferCommand(details : TransferDetails) extends MoneyTransferCommand
RecordDebitCommand(accountId : EntityId) extends MoneyTransferCommand
RecordDebitFailedDueToInsufficientFundsCommand(accountId : EntityId) extends MoneyTransferCommand
RecordCreditCommand(accountId : EntityId) extends MoneyTransferCommand

case class TransferDetails(fromAccountId : EntityId, toAccountId : EntityId, amount : BigDecimal)

@)crichardson

Hybrid OO/FP domain objects

OO0 = State + Behavior

Account

State balance

processCommand(cmd : Command) : Seq[Events]

Behavior applyEvent(event : Event) : Account

@)crichardson

Aggregate traits

Used by
Event Store to
reconstitute
aggregate

trait Aggregate[T] { self

Apply event returning
updated Aggregate

=

def applyEvent(event : Event) : T

'trait CommandProcessingAggregate[T, -CT] extends Aggregate[T] { self
: CT) : SeqlEvent]

def processCommand(command

by

Map Command to Events

@crichardson

=

Account - command processing

case class Account(balance : BigDecimal)
extends PatternMatchingCommandProcessingAggregate[Account, AccountCommand] {

def this() = this(null)

Prevent
def processCommand = {

case OpenAccountCommand(initialBalance) => overdraft
Seq(AccountOpenedEvent (initialBalance))

case CreditAccountCommand(amount, transactionId) =>
Seq(AccountCreditedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId) if amount <= balance =>

Seq(AccountDebitedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId) =>
Seq(AccountDebitFailedDueToInsufficientFundsEvent(amount, transactionId))

@crichardson

Account - applying events

case class Account(balance : BigDecimal)
extends PatternMatchingCommandProcessingAggregate[Account, AccountCommand] {

def this() = this(null)
Immutable
def applyEvent = {

case AccountOpenedEvent(initialBalance) => copy(balance = initialBalance)

case AccountDebitedEvent(amount, _) => copy(balance = balance - amount)

case AccountCreditedEvent(amount, _) =>
copy(balance = balance + amount)

case AccountDebitFailedDueToInsufficientFundsEvent(amount, _) =>
this

@crichardson

Event Store API

EventStore {

save [T <: Aggregate[T]] (entity: T, events: Seq[Event],
assignedId : Option[EntityId] = None): Future[EntityWithIdAndVersion[T]]

update [T <: Aggregate[T]] (entityIdAndVersion : EntityIdAndVersion,
entity: T, events: Seqg[Event]): Future[EntityWithIdAndVersion[T]]

find[T <: Aggregate[T] : ClassTag] (entityId: EntityId)
Future[EntityWithIdAndVersion[T]]

findOptional [T <: Aggregate[T] : ClassTag] (entityId: EntityId)
Future[Option[EntityWithIdAndVersion[T]]]

subscribe (subscriptionId: SubscriptionId) :
Future [AcknowledgableEventStream]

@crichardson

FP-style domain objects

-P = Separation of State and
Sehavior

Account AccountAggregate

balance processCommand(Account, Command) : Seq[Events]

applyEvent(Account, Event) : Account

State

Behavior

@)crichardson

Aggregate type classes/implicits

trait Aggregate[T] {

def newInstance() : T
Used by

def applyEvent(aggregate : T, event : Event) : T Event Store to
reconstitute
aggregate

}

trait CommandProcessingAggregate[T] extends Aggregate[T] {
def processCommand(aggregate : T, command : Command) :
Seq[Event]

@)crichardson

Functional-style Account Aggregate

case class Account(balance: BigDecimal) Behavior

implicit object AccountAggregate
extends CommandProcessingAggregate[Account] with ModifierBasedAggregate[Account] {

def newInstance() = Account(null)

override def processCommand(account: Account, command: Command): Seq[Event] =
command match {
case OpenAccountCommand(initialBalance) =>
Seq(AccountOpenedEvent (initialBalance))

case CreditAccountCommand(amount, transactionId) =>
Seq(AccountCreditedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId)
if amount <= account.balance =>
Seq(AccountDebitedEvent (amount, transactionId))

case DebitAccountCommand(amount, transactionId) =>
Seq(AccountDebitFailedDueToInsufficientFundsEvent(amount, transactionId))

Functional-style Account Aggregate

implicit object AccountAggregate Behavior
extends CommandProcessingAggregate[Account] with ModifierBasedAggregate[Account] {

def newInstance() = Account(null)

override def processCommand(account: Account, command: Command): Seq[Event] =
command match {...}

val lenser = Lenser[Account]
val _balance = lenser(_.balance)

override def modifier = {
case AccountOpenedEvent(initialBalance) => _balance.set(initialBalance)
case AccountDebitedEvent(amount, _) => _balance.modify(_ — amount)
case AccountCreditedEvent(amount, _) => _balance.modify(_ + amount)
case AccountDebitFailedDueToInsufficientFundsEvent(amount, _) => unchanged

by

@)crichardson

FP-style event store

Enables inference of
T, and EV

EventStore {

save[T, EV <: Event](clasz : Class[T], events: Seq[EV], assignedId: Option[EntityId] = None, triggeringEvent: Option[ReceiptHandle] = None
(implicit ag : Aggregate[T, EV]) :
Future[EntityIdAndVersion]

update[T, EV <: Event](clasz : Class[T], entityIdAndVersion: EntityIdAndVersion, events: Seq[Event], triggeringEvent: Option[ReceiptHandle
(implicit ag : AggregatelT, EV]) :
Future[EntityIdAndVersion]

find[T, EV <: Event](clasz : Class[T], entityId: EntityId)
(implicit ag : Aggregate[T, EV]): Futurel[EntityWithMetadatalT, EVI]]

findOptionall[T, EV <: Eventl(clasz : Class[T], entityId: EntityId)
(implicit ag : Aggregate[T, EV]): Future[Option[EntityWithMetadatalT, EV]]]

Tells ES how to instantiate
aggregate and apply events

Strategy

@)crichardson

Haskell aggregate

class Aggregate s where

data Error s :: *

data Command s :: *

data Event s :: *

execute :: s -> Command s -> Either (Error s) (Event s)
apply :: s -> Event s -> s

seed :: s

https://gist.github.com/Fristi/ 7327904

data EventData e = EventData {
eventld :: Int,
body :: Event e

load :: (Aggregate a) => [EventData a] -> a
load = foldl folder seed
where
folder state = apply state . body

@)crichardson

Haskell Ticlacloe aggregate

data Game = Game {
state :: GameState
} deriving (Show, Eq)

instance Aggregate Game where
data Error Game = NoValidMove deriving (Show, Eq)
data Event Game = GameCreated
| MoveMade Int
| GameWon
| GameTied deriving (Show, Eq)
data Command Game = CreateGame | MakeMove Int deriving (Show, Eq)
— execute’ CreateGame = Right GameCreated
Game state “execute’ MakeMove k =
case makeMove k state of

Nothing -> Left NoValidMove
Just -> Right (MoveMade k)

state “apply’ GameCreated = state
s ‘apply’ MoveMade k = s { state = fromJust $ makeMove k (state s) }

state “apply’ GameWon = state
state “apply’ GameTied = state

seed = Game initialGameState

@)crichardson

JavaScript aggregate

function Account(){
(!(this Account)) Account();
this.entityTypeName - entityTypeName;
this.balance - 9;
}

Account.prototype.applyEvent = function (event) {
var eventType = event.eventType;

(eventType){
AccountOpenedEvent:
this.balance - event.eventData.initialBalance;
H
AccountDebitedEvent:
this.balance event.eventData.amount;

Account.prototype.processCommand = function (command) {

(command. commandType) {
CreateAccountCommand:
[{
eventType: AccountOpenedEvent,
eventData: {
initialBalance: command.initialBalance,
customerId: command.customerId,
title: command.title
}
}1;

’
Nphi+A~rru=+Command -

@)crichardson

Agenda

Why event sourcing?
Designing a domain model based on event sourcing
Event sourcing and service design

Microservices and event sourcing

@)crichardson

Designing senvices

Responsibilities and collaborations
= |nvoked by adapter, e.g. HTTP controller
= Creates a Command

= Selects new aggregate or existing aggregate to process command

Load aggregate from same bounded context, e.g. Add a Post to a Forum - load forum

LL.oad data from another other bounded context, e.g. addProductToCart()
= Requests Productinfo from ProductService

= |nvokes PricingService to calculate discount price

Sometimes loads target aggregate before creating command

= ¢.g. addProductToCart() needs contents of shopping cart to calculate discounted
price of product to add

@)crichardson

Money transter example

Story

As a customer of the bank

| want to transfer money between two bank accounts
So that | don't have to write a check

Scenario

Given that my open savings account balance is $150
Given that my open checking account balance is $10
When | transfer $50 from my savings account

to my checking account
Then my savings account balance is $100
Then my checking account balance is $60
Then a Money Transfer was created

Pre
conditions

Post
conditions

@)crichardson

Old-style ACID...

public class MoneyTransferServiceImpl ..{

private final AccountRepository accountRepository;
private final MoneyTransferRepository moneyTransferRepository;

@Pransacticonal
public MoneyTransfer transfer (
String fromAccountId, String toAccountId,
double amount) throws MoneyTransferException {
Account fromAccount =
accountRepository.findAccount (fromAccountId) ;
Account toAccount =
accountRepository.findAccount (toAccountId) ;
// .. Verify accounts are open ..
FremMACCcolnE ldehiitE (ameuni) ;
tOACEOURTE , CirEell € (Zmoumnie) s
return moneyTransferRepository.createMoneyTransfer (
LIEOMACCOUINE ; TOACCOUNE, EMeumniE) 5

@)crichardson

... becomes eventually
consistent (BASE)

public MoneyTransfer transfer () {
.. Creates MoneyTransfer ..

= Updating multiple aggregates
= multi-step, event-driven flow J

= each step updates one

Aggregate
= Service creates saga to Money
coordinate workflow Transfer

= Post-conditions eventually true

= A state machine create redited
= Part of the domain, e.g. debited debit
M Ti f t
oneyTransfer aggregate recorded
= OR Synthetic aggregate
To

From
Account Account

Need compensating
transactions

= Pre-conditions might be false when attempting to update an
aggregate

= For example: an account might be closed transferring money:

= from account when debiting = stop transfer
» [0 gaccount = reverse the debit

= from account when attempting reversal = bank wins!

@)crichardson

Money TransferService Bl

class MoneyTransferService(implicit eventStore: EventStore) {

def transferMoney(transferDetails: TransferDetails, accountService: AccountService) =
accountService. findAccountById(transferDetails.fromAccountId) zip
accountService.findAccountById(transferDetails. fromAccountId) flatMap {
case (fromAccount, toAccount) =>
if (!fromAccount.open)
throw new AccountClosedException()
if (!toAccount.open)
throw new AccountClosedException()
newEntity[MoneyTransfer] <== CreateMoneyTransferCommand(transferDetails)

DSL concisely specifies:
1.Creates Account aggregate
2.Processes command
3.Applies events

4.Persists events

@)crichardson

Event handling in Account

Triggers BeanPostProcessor Durable subscription name

@EventSubscriber(id = "accountEventHandlers")
class TransferWorkflowAccountHandlers(eventStore: EventStore) extends CompoundEventHandler {

implicit val es = eventStore

@EventHandlerMethod
val performDebit =
handlerForEvent [MoneyTransferCreatedEvent] { de =>
existingEntity[Account] (de.event.details.fromAccountId) <==
DebitAccountCommand(de.event.details.amount, de.entityId)
}

@EventHandlerMethod
val performCredit = handlerForEvent [DebitRecordedEvent] { de =>
existingEntity[Account] (de.event.details.toAccountId) <==
CreditAccountCommand(de.event.details.amount, de.entityId)

1.Load Account aggregate
2.Processes command
3.Applies events

4 .Persists events

@crichardson

JavaScript service

AccountService.prototype.createAccount function (initialBalance, customerId, title, callback){
var command = { commandType: Account.CreateAccountCommand, initialBalance: initialBalance, customerId: customerId, title: title };

this.esUtil.createEntity(Account.Account, command, callback);
};

@)crichardson

Agenda

Why event sourcing?
Designing a domain model based on event sourcing
Event sourcing and service design

Microservices and event sourcing

@)crichardson

—vent Store only sup
based looku

herefore. ..

DOI1S
O

DK-

—S+CQRS-based
MICroServices architecture

Updates Queries
A t (Denormalized)
Command-side Query-side

Events Events

Event Store

Modular domain model

Forum moderator Forum v_moderator
User User
sssss i
Post author Do autnor
Tightly coupled Loosely coupled aggregates
ACID Eventually consistent

@)crichardson

Monolithickirst approach
WAR/EAR

Forum _moderator

User
“ author

Post

Tomcat

Not entirely free though -
EVQM& SOMT‘ﬁLV\S T‘Q.W\E«MW\ @crichardson

But no

Big Ball of Mud to
untangle

Microservices deployment

WAR/EAR WAR/EAR WAR/EAR
Forum Post User
Tomcat Tomcat Tomcat

Much Mgher -
WLETOSEr VILEe S pr&mmm

@)crichardson

Summary.

Event sourcing solves a variety of problems in modern
application architectures

Scala is a great language for implementing ES-based domain
models:

= (Case classes

= Pattern matching

= Recreating state = functional fold over events
But Java, JavaScript and Haskell work too!

ES-based architecture = flexible deployment

@)crichardson

» @crichardson chris@chrisrichardson.net

http://plainoldobjects.com http://microservices.io

