
@crichardson

Developing functional domain 
models with event sourcing
Chris Richardson 

Author of POJOs in Action 
Founder of the original CloudFoundry.com 

   @crichardson 
chris@chrisrichardson.net 
http://plainoldobjects.com 
http://microservices.io 



@crichardson

Presentation goal

How to develop functional 
domain models based on event 

sourcing



@crichardson

About Chris

Consultant & 
Founder of Eventuate.IO



@crichardson

For more information

http://microservices.io 
http://github.com/cer/microservices-examples/ 
https://github.com/cer/event-sourcing-examples 
http://plainoldobjects.com/ 
https://twitter.com/crichardson 
http://eventuate.io/



@crichardson

Agenda

Why event sourcing? 
Designing a domain model based on event sourcing 
Event sourcing and service design  
Microservices and event sourcing



@crichardson

Tomcat

Traditional monolithic 
architecture

Browser/
Client

WAR/EAR

RDBMS

Customers

Accounts

Transfers

Banking UI

develop 
test 

deploy

Simple 

Load 
balancer

scale 

Spring MVC

Spring 
Hibernate

...

HTML
REST/JSON

ACID



@crichardson

But large and/or complex 
monolithic applications  

= 
Trouble!



@crichardson

Using a single RDBMS has its 
limitations



@crichardson

Apply the scale cube

X axis  
- horizontal duplication

Z ax
is 

- d
ata

 pa
rtit

ion
ing

Y axis -  
functional 

decomposition

Sca
le b

y s
plit

tin
g s

im
ilar

 

thi
ng

s

Scale by  
splitting  

different things



@crichardson

Today: use a microservice, polyglot 
architecture

Banking UI

Account Management Service MoneyTransfer Management 
Service

Account  
Database MoneyTransfer Database

Standalone 
services

Sharded SQLNoSQL DB



@crichardson

But now we have  
distributed data management 

problems



@crichardson

Example: Money transfer

Account Management 
Service

MoneyTransfer 
Management Service

Account  
Database

MoneyTransfer 
Database

Account #1 Money Transfer

Account #2

No 2PC

No 
ACID

NoSQL SQL



@crichardson

Use an event-driven 
architecture

Services publish events when state changes 
Services subscribe to events and update their state 

Maintain eventual consistency across multiple aggregates 
(in multiple datastores)  
Synchronize replicated data



@crichardson

MoneyTransferService
MoneyTransfer 

fromAccountId = 101 
toAccountId = 202 
amount = 55 
state = INITIAL

MoneyTransfer 
fromAccountId = 101 
toAccountId = 202 
amount = 55 
state = DEBITED

MoneyTransfer 
fromAccountId = 101 
toAccountId = 202 
amount = 55 
state = COMPLETED

Eventually consistent money transfer

Message Bus

AccountService

transferMoney()

Publishes:
Subscribes to:

Subscribes to:

publishes:

MoneyTransferCreatedEvent

AccountDebitedEvent

DebitRecordedEvent

AccountCreditedEvent
MoneyTransferCreatedEvent

DebitRecordedEvent

AccountDebitedEvent
AccountCreditedEvent

Account 
id = 101 
balance = 250

Account 
id = 202 
balance = 125

Account 
id = 101 
balance = 195

Account 
id = 202 
balance = 180



@crichardson

How to 
atomically  

update the database  
and  

publish an event  
without 2PC? 

(dual write problem)



@crichardson

Event sourcing

For each aggregate:  
Identify (state-changing) domain events 
Define Event classes 

For example,  
Account: AccountOpenedEvent, AccountDebitedEvent, 
AccountCreditedEvent 
ShoppingCart: ItemAddedEvent, ItemRemovedEvent, 
OrderPlacedEvent



@crichardson

Persists events  
NOT current state

Account

balance

open(initial) 
debit(amount) 
credit(amount)

AccountOpened

Event table

AccountCredited

AccountDebited

101 450

Account tableX
101

101

101

901

902

903

500

250

300



@crichardson

Replay events to recreate state

Account

balance

AccountOpenedEvent(balance) 
AccountDebitedEvent(amount) 
AccountCreditedEvent(amount)

Events



@crichardson

Before: update state + publish 
events

Two actions that must be atomic 

Single action that can be 
done atomically

Now: persist (and publish) 
events



@crichardson

Optimizing using snapshots

Most aggregates have relatively few events 
BUT consider a 10-year old Account ⇒ many transactions 

Therefore, use snapshots: 
Periodically save snapshot of aggregate state 
Typically serialize a memento of the aggregate 
Load latest snapshot + subsequent events



@crichardson

Request handling in an event-sourced application

HTTP 
Handler

Event 
Store

pastEvents = findEvents(entityId)

Account

new()

applyEvents(pastEvents)

newEvents = processCmd(SomeCmd)

saveEvents(newEvents)

Microservice A

(optimistic locking)



@crichardson

Event Store publishes events - 
consumed by other services

Event 
Store

Event 
Subscriber

subscribe(EventTypes)

publish(event)

publish(event)

Aggregate

NoSQL 
materialized 

view

update()

update()

Microservice B



@crichardson

About the event store
Hybrid database and message broker 

Retrieve events for an aggregate 
Append to an aggregates events 
Subscribe to events 

Event store implementations: 
Home-grown/DIY 
geteventstore.com by Greg Young 
My event store - bit.ly/trialeventuate



@crichardson

Business benefits of event 
sourcing

Built-in, reliable audit log  
Enables temporal queries 
Publishes events needed by big data/predictive analytics etc. 
Preserved history ⇒ More easily implement future requirements



@crichardson

Technical benefits of event 
sourcing

Solves data consistency issues in a Microservice/NoSQL-based 
architecture: 

Atomically save and publish events 
Event subscribers update other aggregates ensuring eventual 
consistency 
Event subscribers update materialized views in SQL and 
NoSQL databases (more on that later) 

Eliminates O/R mapping problem



@crichardson

Drawbacks of event sourcing

Weird and unfamiliar 
Events = a historical record of your bad design decisions  
Handling duplicate events can be tricky 
Application must handle eventually consistent data 
Event store only directly supports PK-based lookup (more on 
that later)



@crichardson

Agenda

Why event sourcing? 
Designing a domain model based on event sourcing 
Event sourcing and service design  
Microservices and event sourcing



@crichardson

Use the familiar building blocks 
of DDD

Entity 
Value object 
Services 
Repositories 
Aggregates

With some  
differences



@crichardson

Partition the 
domain model  

into Aggregates



Aggregate design

Graph consisting of a root 
entity and one or more other 
entities and value objects 
Each core business entity = 
Aggregate: e.g. customer, 
Account, Order, Product, …. 
Reference other aggregate 
roots via primary key 
Often contains partial copy  
of other aggregates’ data

Order

OrderLine 
Item

quantity 
productId 
productName 
productPrice

customerId

Address

street 
city 
…



@crichardson

Aggregate granularity is 
important

Transaction = processing one command by one aggregate 
No opportunity to update multiple aggregates within a 
transaction 
If an update must be atomic (i.e. no compensating transaction) 
then it must be handled by a single aggregate 

e.g. scanning boarding pass at security checkpoint or when 
entering jetway



@crichardson

Aggregate granularity

Forum

Post

User

moderator

author

Forum

Post

User

moderator

author

Forum

Post

User

moderator

author

Consistency Scalability/ 
User experience



@crichardson

ES-based Aggregate design
class Account { 
  var balance : Money; 

  def debit(amount : Money) { 
     balance = balance - amount 
  } 
}

case class Account(balance : Money) { 

def processCommand(cmd : Command) : Seq[Event] = ??? 

def applyEvent(event : Event) : Account = … 

} 

case class DebitCommand(amount : Money) 
case class AccountDebitedEvent(amount : Money)

Classic, 
mutable  

domain model 

Event centric, 
immutable



Designing domain events
Record state changes for an 
aggregate 
Part of the public API of the 
domain model ProductAddedToCart

id : TimeUUID 
productId 
productName 
productPrice 
shoppingCartId

Required by 
aggregate

Enrichment: 
Used by consumers



@crichardson

Designing commands

Created by a service from incoming request 
Processed by an aggregate 
Immutable 
Contains value objects for 

Validating request 
Creating event 
Auditing user activity



@crichardson

Events and Commands



@crichardson

Hybrid OO/FP domain objects



@crichardson

OO = State +  Behavior

balance

Account

processCommand(cmd : Command) : Seq[Events] 

applyEvent(event : Event) : Account

State

Behavior



@crichardson

Aggregate traits

Map Command to Events

Apply event returning 
updated Aggregate

Used by 
Event Store to 
reconstitute 
aggregate



@crichardson

Account - command processing

Prevent 
overdraft



@crichardson

Account - applying events

Immutable



@crichardson

Event Store API

trait EventStore { 

  def save[T <: Aggregate[T]](entity: T, events: Seq[Event],  
      assignedId : Option[EntityId] = None): Future[EntityWithIdAndVersion[T]] 

  def update[T <: Aggregate[T]](entityIdAndVersion : EntityIdAndVersion,  
      entity: T, events: Seq[Event]): Future[EntityWithIdAndVersion[T]] 

  def find[T <: Aggregate[T] : ClassTag](entityId: EntityId) :     
      Future[EntityWithIdAndVersion[T]] 

  def findOptional[T <: Aggregate[T] : ClassTag](entityId: EntityId) 
      Future[Option[EntityWithIdAndVersion[T]]] 

  def subscribe(subscriptionId: SubscriptionId):  
       Future[AcknowledgableEventStream] 
}



@crichardson

FP-style domain objects



@crichardson

FP = Separation of State and 
Behavior

Account

balance

AccountAggregate

processCommand(Account, Command) :  Seq[Events] 

applyEvent(Account, Event) : Account

State
Behavior



@crichardson

Aggregate type classes/implicits

Used by 
Event Store to 
reconstitute 
aggregate



@crichardson

Functional-style Account Aggregate

State Behavior



@crichardson

Functional-style Account Aggregate

Behavior



@crichardson

FP-style event store
Enables inference of 

T, and EV

Tells ES how to instantiate 
aggregate and apply events 

= 
Strategy



@crichardson

Haskell aggregate

https://gist.github.com/Fristi/7327904



@crichardson

Haskell TicTacToe aggregate



@crichardson

JavaScript aggregate



@crichardson

Agenda

Why event sourcing? 
Designing a domain model based on event sourcing 
Event sourcing and service design  
Microservices and event sourcing



@crichardson

Designing services
Responsibilities and collaborations 

Invoked by adapter, e.g. HTTP controller 
Creates a Command 
Selects new aggregate or existing aggregate to process command 

Load aggregate from same bounded context, e.g. Add a Post to a Forum - load forum 
Load data from another other bounded context, e.g. addProductToCart()   

Requests ProductInfo from ProductService 
Invokes PricingService to calculate discount price 

Sometimes loads target aggregate before creating command 
e.g. addProductToCart() needs contents of shopping cart to calculate discounted 
price of product to add



@crichardson

Money transfer example

As a customer of the bank 
I want to transfer money between two bank accounts 
So that I don't have to write a check

Given that my open savings account balance is $150 
Given that my open checking account balance is $10 
When I transfer $50 from my savings account  
           to my checking account 
Then my savings account balance is $100 
Then my checking account balance is $60 
Then a MoneyTransfer was created

Story

Scenario

Post 
conditions

Pre 
conditions



@crichardson

Old-style ACID…
public class MoneyTransferServiceImpl …{ 

   private final AccountRepository accountRepository; 
   private final MoneyTransferRepository moneyTransferRepository; 
    … 
   @Transactional 
   public MoneyTransfer transfer( 
            String fromAccountId, String toAccountId, 
            double amount) throws MoneyTransferException { 
    Account fromAccount =    
         accountRepository.findAccount(fromAccountId); 
    Account toAccount =  
         accountRepository.findAccount(toAccountId); 
    // … Verify accounts are open … 
    fromAccount.debit(amount); 
    toAccount.credit(amount); 
    return moneyTransferRepository.createMoneyTransfer( 
                        fromAccount, toAccount, amount); 
    } 
}



… becomes eventually 
consistent (BASE)

Updating multiple aggregates 
multi-step, event-driven flow 
each step updates one 
Aggregate 

Service creates saga to 
coordinate workflow 

A state machine 
Part of the domain, e.g. 
MoneyTransfer aggregate 
OR Synthetic aggregate 

Post-conditions eventually true

Money 
Transfer

From 
Account

To 
Account

created
debited debit 

recorded

credited

 public MoneyTransfer transfer() {  
    … Creates MoneyTransfer … 
} 



@crichardson

Need compensating 
transactions

Pre-conditions might be false when attempting to update an 
aggregate 
For example: an account might be closed transferring money: 

from account when debiting ⇒ stop transfer 

to account ⇒ reverse the debit 

from account when attempting reversal ⇒ bank wins!



@crichardson

MoneyTransferService Remoting 
proxy

DSL concisely specifies: 
1.Creates Account aggregate 
2.Processes command 
3.Applies events 
4.Persists events



@crichardson

Event handling in Account

1.Load Account aggregate 
2.Processes command 
3.Applies events 
4.Persists events

Durable subscription nameTriggers BeanPostProcessor



@crichardson

JavaScript service



@crichardson

Agenda

Why event sourcing? 
Designing a domain model based on event sourcing 
Event sourcing and service design  
Microservices and event sourcing



@crichardson

Event Store only supports PK-
based lookup 
Therefore….



@crichardson

ES+CQRS-based 
microservices architecture

Event Store

Command-side

Updates

Events

Query-side

Queries

(Denormalized) 
View

Events

Aggregate



@crichardson

Modular domain model

Forum

Post

User

moderator

author

Forum

Post

User

moderator

author

Tightly coupled 
ACID

Loosely coupled aggregates 
Eventually consistent



@crichardson

MonolithicFirst approach

Tomcat

WAR/EAR

Forum

Post

User

moderator

author

Not entirely free though -  
Event Sourcing premium



@crichardson

But no Big Ball of Mud to 
untangle



@crichardson

Microservices deployment

Tomcat

WAR/EAR

Much higher -  
microservices premium

Forum

Tomcat

WAR/EAR

Post

Tomcat

WAR/EAR

User



@crichardson

Summary
Event sourcing solves a variety of problems in modern 
application architectures 
Scala is a great language for implementing ES-based domain 
models: 

Case classes 
Pattern matching 
Recreating state = functional fold over events 

But Java, JavaScript and Haskell work too! 
ES-based architecture = flexible deployment



@crichardson

@crichardson chris@chrisrichardson.net

http://plainoldobjects.com       http://microservices.io


