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Who I am

VP of Technology at Flatiron Health

I used to be a scalable backends guy in 
Facebook and Microsoft
Now I mostly engineer teams and people...

At Flatiron, we organize the world’s oncology 
treatment information and make it useful for 
patients, physicians, life science companies, 
and researchers.
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Building the world’s largest cancer 
database 

The best cancer research happens in clinical 
trials

Only 4% of US cancer patients participate in 
clinical trials (expensive, hard to enroll)

Data detailing the treatment outcomes of 24 out 
of 25 patients stays siloed and is basically lost 
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Building the world’s largest cancer 
database 

Largest real-world oncology 
data source, with ~1/5  of 
incident cases in the US

Clinics   
Pharma   
Research
                
Patients
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Building the world’s 
largest cancer database 
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Agenda

● Introduction
● Problem definition:

○ Task
○ Challenges

■ Data
■ Organizational 

● Our approach:
○ What we built to address that
○ Challenges
○ Evolution

● Summary
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The task

Flatiron
Data
Model

Business requirement (early 2013):
- Get data from as many clinics as possible 

into a single data model.
- Optimize for quick client feedback: pivoting 

on client facing MVP
This lecture is about solving this challenge
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Data Challenges:
Oncology Treatment Data 101

Oncology Clinic

EHR Electronic Health Records:
- Visits, Diagnosis, Labs, Drugs
- Notes, scans, reports

Practice Management:
- Schedule, Charges
- Transactions, Insurance

PM
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Oncology Treatment Data 101

If you have seen one hospital IT setup, 
you have seen one hospital IT setup

● Source system 
heterogeneity

● Clinical workflow 
heterogeneity

● Interfaces heterogeneity 
● A lot of legacy data 
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2220 Blood Serum Albumin                                                             g/dL
QD25001600 ALBUMIN/GLOBULIN RATIO  QD (calc)
QD25001400 ALBUMIN  QD g/dL
QD50058600 ALBUMIN %                             
QD50055700 ALBUMIN g/dL
CL3215104 Albumin % (EPR) %                             
LC001081 ALBUMIN, SERUM (001081) g/dL
LC003718 Albumin, U %                             
LC001488 Albumin g/dL
LC133751 Albumin, U %                             
CL3215162 Albumin%, Urine %                             
CL3215160 Albumin, Urine mg/24hr
3234 ALBUMIN SS g/dL
LC133686 Albumin, U %                             
QD50060710 MICROALBUMIN mg/dL                         
QD50061100 MICROALBUMIN/CREATININE RATIO, 

RANDOM URINE
mcg/mg 
creat

QD85991610 ALBUMIN relative %
50058600 ALBUMIN UPEP RAND %                             
CL3210074 ALBUMIN LEVEL g/dL
QD86008211 ALBUMIN/GLOBULIN RATIO (calc)
LC149520 Albumin g/dL
QD45069600 PREALBUMIN mg/dL                         
QD900415245 ALBUMIN, SERUM mg/dl                         
QD900429745 ALBUMIN g/dL
CL3215124 Albumin Electrophoresis g/dL
LC016931 Prealbumin mg/dL                         
QD50060800 MICROALBUMIN, 24 HOUR UR mg/24 h
QD50060900 MICROALBUMIN, 24 HOUR UR mcg/min                       
QD85994821 ALBUMIN,SERUM g/dL
CL3213320 PREALBUMIN mg/dL                         
QD85995225 PROTEIN ELECTROPHORESIS ALBUMINg/dL

1751-7 Albumin [Mass/volume] 
in Serum or Plasma g/dL

Oncology Treatment Data 101
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Data Challenges: Summary

● Dirty, high dimensional, incomplete, 
heterogenous data

● Not: web scale log-streams
● Not: huge images, genomic sequence data
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Give me the tech already!



© 2015 Flatiron Health, Inc.

Not just yet...

Understanding our organizational challenge is 
key for describing the architecture we built
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Organizational Challenge

An oncologist, an engineer, a medical analyst, 
a nurse, and an informaticist walk into a bar…

Python R, SQL Term
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Software 
engineer

Build systems, algorithms, 
implement business logic

Python, JS, 
SQL,...

Data 
Analyst

Expert of clinics and 
EHR/PM databases

SQL, R,...

Medical 
Informaticist

Expert of medical data 
representation, terminologies

Proprietary 
tools

Flatiron 
Nurse

Expert of treatment 
workflows 

English

Flatiron 
Oncologist

Understands the disease 
and treatment

English

Organizational Challenge
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Organizational Challenge

Flatiron Data 
Model

Provider A

Provider B

EHR

PMEHR

Provider C

Data Warehouse

t
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Organizational Challenge

t

Flatiron Data 
Model

Provider A

EMR
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Organizational Challenge

Flatiron data 
model

Provider A

EMR

Conway’s law (1968):
organizations which design systems ... are constrained to 
produce designs which are copies of the communication 
structures of these organizations...
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Organizational Challenge
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Organizational Challenge: Summary

Integrating a clinic requires 
multidisciplinary expertise
Hand-off between disciplines 
required a lot of back-and forth
Initial attempt produced codebase 
difficult to understand, hard to 
reuse, hard to maintain
Clash between agile process and unpredictable 
external feedback
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Agenda

● Introduction
● Problem definition:

○ Task
○ Challenges

■ Data
■ Organizational 

● Our approach:
○ What we built to address that
○ Challenges
○ Evolution

● Summary
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Our Data Integration requirements

- Optimize for latency to client feedback:
- Limit multidisciplinary handoffs
- Optimize experimentation/invention process 

- Support healthcare data sources: 
- make it easy to add client specific logic
- make it easy to reuse logic
- make it secure (protect health information)
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1st realization - ETL framework

Data pipeline / 
ETL

Per client:Framework:

Declarative
Domain 

Configuration ...
Declarative

Domain 
Configuration

Separation of concerns: an analyst can be fully productive 
with SQL alone (or R or ...).
No more business logic handoffs, redundant knowledge 
transfer lag, and its debugging
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1st realization - ETL framework

Flatiron Data 
Model

t

Provider A

EMR

Data Analyst

Medical Informaticist
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Our Data Integration requirements

- Optimize for latency to client feedback:
- Limit multidisciplinary handoffs
- Optimize experimentation/invention process 

- Support healthcare data sources: 
- make it easy to add client specific logic
- make it easy to reuse logic
- secure protected health information
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VFS

Node DAG Worker

JobSpec

Content 
Addressable 
Blob Storage

Jobs Results
Pipeline Manifest

Dispatcher

H(                )

Our ETL Framework - 
High level architecture

H(                )
...

ETL Configuration 

Runtime 

Results / execution artifacts 
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ETL Representation

Complex transformation broken 
to a series of simpler 
transformation represented as 
directed acyclic graph.

Each node:
Input: A set of tables (nodes) 
Transformation: A simple SQL, 
Python, R, Bash transform
Output: A single table
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ETL Representation

Complex transformation broken 
to a series of simpler 
transformation represented as 
directed acyclic graph.

Each node:
Input: A set of tables (nodes) 
Transformation: A simple SQL, 
Python, R, Bash transform
Output: A single table
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ETL Representation

Nodes can input and output 
CSVs.
ETL graph representation is 
agnostic to specific languages.

Adding a transformation node in 
any language is as easy as 
adding several lines in the 
framework’s code.
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In practice 

This is the main user 
interface

Source file

Patient.sql

SELECT Pat_ID1
FROM …;
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In practice - dependencies

Patient Extract

@include 
action/sql/sqlite

Physician Extract

@include 
action/sql/sqlite

PatientPhysician

@include 
action/sql/sqlite
@depend ./Patient
@depend ./Physician
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ETL Representation

● Text representation
○ Each independent 

pipeline is a directory
○ Each transformation is a 

file
○ Directives in file define 

dependencies
● Git

○ Versioning
○ Branch == Experiment
○ Easy branching...

VFS

Node DAG
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● VFS enables richness
of directives

● Introduction of OO concepts and meta 
programming world to the ETL world
○ Inheritance and polymorphism of one more groups of 

transformations
○ Templating (parameter substitution)

● Adding a new clinic
○ In many cases, as easy as a set of include directives, 

overriding several nodes

ETL Representation

VFS

Node DAG
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Varian (common)ClinicA

Patient Extract

@include 
action/sql/sqlite

Physician Extract

@include 
action/sql/sqlite

PatientPhysician

@include 
action/sql/sqlite
@depend ./Patient
@depend ./Physician

ClinicB

Varian

@include common/varian

Varian

@include common/varian

In practice - node reuse 
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In practice - node override 

Varian (common)ClinicA

Patient extract

@include 
action/sql/sqlite

Physician extract

@include 
action/sql/sqlite

Patient Physician

@include 
action/sql/sqlite
@depend ./Patient
@depend ./Physician

Varian

@include common/mosaiq

Physician extract

@include 
action/sql/sqlite
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Our Data Integration requirements

- Optimize for latency to client feedback:
- Limit multidisciplinary handoffs
- Optimize experimentation/invention process 

- Support healthcare data sources: 
- make it easy to add client specific logic
- make it easy to reuse logic
- secure protected health information
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Execution artifacts 
caching

● Our node transformations are deterministic 
functions: 

f(input tables, node code) = output table  

● We can cache results using the following key:
Hash(input tables, node code)

● We cache results in an immutable centralized 
key value store (currently S3)
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Execution artifacts 
caching

@include action/sql/sqlite
@depend ./DrugMetadata
@depend ./DrugList

SELECT C1, C2
JOIN …
….

A: AltosDrug.sql

1,Tylenol,100mg,..
2, B12, 50mg,...
3, Carboplatin, 10ml
...

Tylenol,acetaminophen,...
B12, cyanocobalamin,...
Abraxane, paclitaxel,...
Onxol, paclitaxel,...
….

B: DrugList.csv C: DrugMetadata.csv

Key = SHA256(A||B||C)
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Execution artifacts 
caching

@include action/sql/sqlite
@depend ./DrugMetadata
@depend ./DrugList

SELECT C1, C2
JOIN …
….

A: AltosDrug.sql

1,Tylenol,100mg,..
2, B12, 50mg,...
3, Carboplatin, 10ml
...

Tylenol,acetaminophen,...
B12, cyanocobalamin,...
Abraxane, paclitaxel,...
Onxol, paclitaxel,...
….

B: DrugList.csv C: DrugMetadata.csv

Key = SHA256(A||B||C)

Production

@include action/sql/sqlite
@depend ./DrugMetadata
@depend ./DrugList

SELECT C1, C3
JOIN …
….

A’: AltosDrug.sql

Experiment

Key’ = SHA256(A’
||B||C)
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Cache in action - 
2nd example

Latest production run results
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Cache in action - 
2nd example

Changed

One transformation file changed 
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Cache in action - 
2nd example

Limited subgraph needs recompute
Changed
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Quick experimentation

● Surgically changing a very complex pipeline 
is fast
○ Branching is easy (as any other code branch in Git)
○ Overriding a node is easy (think OO)
○ Need to recompute only one path of the DAG, all 

other freshest data is ready

● Our data analysts can experiment 
independently:
○ Need to know SQL/R code
○ Need to know how to commit code to Git



© 2015 Flatiron Health, Inc.

Continuous data ingestion

● For specific pipelines (ETL graphs)
○ Whenever we check-in a new node (or a node 

update) we recompute the pipeline 
○ Cache of intermediates makes this efficient

● Basically a continuous integration test
● Allows testing and development with most 

recent data
● Data artifacts are computed, stored, and 

ready for reuse - “Warms the cache”
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Our Data Integration requirements

- Optimize for latency to client feedback:
- Limit multidisciplinary handoffs
- Optimize experimentation/invention process 

- Support healthcare data sources: 
- make it easy to add client specific logic
- make it easy to reuse logic
- secure protected health information
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Security for Protected Health 
Information

● Exchanging cache keys (secure hashes) 
instead of actual data
○ Central storage - central governance
○ Immutable storage - supports auditing and data 

provenance requirements.
■ For each pipeline run we store a manifest which 

lists all the artifacts for that run.
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Bottom Line
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Challenges

● Homegrown tool
○ Rebuilding the wings of an airplane while flying
○ Training engineers and non-engineers on a 

homegrown tool
○ Lack of a development environment (everything 

beyond text tools)
● The tool is only one part of the equation:

○ Tool is used in use cases not planned for (great, but 
fails in new ways)

○ Production == Experimentation
■ Empowerment of non-engineers
■ A lot of ‘engineering skills’ to teach
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Evolution

● Building a startup does not end with 
experimentation
○ Tool built in our ‘invent’ phase. 
○ We successfully supported the business…

○ Now, this aspect of the company switched to the 
‘scaling’ phase

● Business requirement expanded from 
“integrate as quickly as you can” to “do that, 
and have a stable nightly pipeline”
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Evolution

● We built a lot around this ETL framework:
○ Pipelines scheduling system 
○ Running multiple pipelines including running stable 

(old) versions of ETL nodes to guarantee fresh data

● Ongoing work:
○ Mature testing framework
○ Optimization for large data sets / streaming 

(incremental ETL). Started to become an issue two 
years in. 

○ Various aspects of robustness
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Summary

● Architectural concepts contributing to quick 
ETL experimentation:
○ Text based branching for ETL configuration (Git FTW)
○ Introduction of OO concepts to ETL
○ Caching based on hash of code and inputs
○ Continuous data ingestion
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Summary

● You can write code with an Oncologist in the 
room

● Technology is as useful as its compatibility 
with:
○ People operating it: 

■ Making specialists independent was key
○ Business requirement: pivoting product lines vs 

Performance / Robustness 
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Special Thanks



KEEP CALM

AND 

KICK CANCER’S ASS

Shameless plug: We are hiring! 
Drop me a note at gil@flatiron.com or visit 
http://flatiron.com 

mailto:gil@flatiron.com
http://flatiron.com/careers
http://flatiron.com/careers

