
ETL Architecture
For Quick Iteration
Gil Shklarski
VP of Technology

© 2015 Flatiron Health, Inc.

Who I am

VP of Technology at Flatiron Health

I used to be a scalable backends guy in
Facebook and Microsoft
Now I mostly engineer teams and people...

At Flatiron, we organize the world’s oncology
treatment information and make it useful for
patients, physicians, life science companies,
and researchers.

© 2015 Flatiron Health, Inc.

Building the world’s largest cancer
database

The best cancer research happens in clinical
trials

Only 4% of US cancer patients participate in
clinical trials (expensive, hard to enroll)

Data detailing the treatment outcomes of 24 out
of 25 patients stays siloed and is basically lost

© 2015 Flatiron Health, Inc.

Building the world’s largest cancer
database

Largest real-world oncology
data source, with ~1/5 of
incident cases in the US

Clinics
Pharma
Research

Patients

© 2015 Flatiron Health, Inc.

Building the world’s
largest cancer database

© 2015 Flatiron Health, Inc.

Agenda

● Introduction
● Problem definition:

○ Task
○ Challenges

■ Data
■ Organizational

● Our approach:
○ What we built to address that
○ Challenges
○ Evolution

● Summary

© 2015 Flatiron Health, Inc.

The task

Flatiron
Data
Model

Business requirement (early 2013):
- Get data from as many clinics as possible

into a single data model.
- Optimize for quick client feedback: pivoting

on client facing MVP
This lecture is about solving this challenge

© 2015 Flatiron Health, Inc.

Data Challenges:
Oncology Treatment Data 101

Oncology Clinic

EHR Electronic Health Records:
- Visits, Diagnosis, Labs, Drugs
- Notes, scans, reports

Practice Management:
- Schedule, Charges
- Transactions, Insurance

PM

© 2015 Flatiron Health, Inc.

Oncology Treatment Data 101

If you have seen one hospital IT setup,
you have seen one hospital IT setup

● Source system
heterogeneity

● Clinical workflow
heterogeneity

● Interfaces heterogeneity
● A lot of legacy data

© 2015 Flatiron Health, Inc.

2220 Blood Serum Albumin g/dL
QD25001600 ALBUMIN/GLOBULIN RATIO QD (calc)
QD25001400 ALBUMIN QD g/dL
QD50058600 ALBUMIN %
QD50055700 ALBUMIN g/dL
CL3215104 Albumin % (EPR) %
LC001081 ALBUMIN, SERUM (001081) g/dL
LC003718 Albumin, U %
LC001488 Albumin g/dL
LC133751 Albumin, U %
CL3215162 Albumin%, Urine %
CL3215160 Albumin, Urine mg/24hr
3234 ALBUMIN SS g/dL
LC133686 Albumin, U %
QD50060710 MICROALBUMIN mg/dL
QD50061100 MICROALBUMIN/CREATININE RATIO,

RANDOM URINE
mcg/mg
creat

QD85991610 ALBUMIN relative %
50058600 ALBUMIN UPEP RAND %
CL3210074 ALBUMIN LEVEL g/dL
QD86008211 ALBUMIN/GLOBULIN RATIO (calc)
LC149520 Albumin g/dL
QD45069600 PREALBUMIN mg/dL
QD900415245 ALBUMIN, SERUM mg/dl
QD900429745 ALBUMIN g/dL
CL3215124 Albumin Electrophoresis g/dL
LC016931 Prealbumin mg/dL
QD50060800 MICROALBUMIN, 24 HOUR UR mg/24 h
QD50060900 MICROALBUMIN, 24 HOUR UR mcg/min
QD85994821 ALBUMIN,SERUM g/dL
CL3213320 PREALBUMIN mg/dL
QD85995225 PROTEIN ELECTROPHORESIS ALBUMINg/dL

1751-7 Albumin [Mass/volume]
in Serum or Plasma g/dL

Oncology Treatment Data 101

© 2015 Flatiron Health, Inc.

Data Challenges: Summary

● Dirty, high dimensional, incomplete,
heterogenous data

● Not: web scale log-streams
● Not: huge images, genomic sequence data

© 2015 Flatiron Health, Inc.

Give me the tech already!

© 2015 Flatiron Health, Inc.

Not just yet...

Understanding our organizational challenge is
key for describing the architecture we built

© 2015 Flatiron Health, Inc.

Organizational Challenge

An oncologist, an engineer, a medical analyst,
a nurse, and an informaticist walk into a bar…

Python R, SQL Term

© 2015 Flatiron Health, Inc.

Software
engineer

Build systems, algorithms,
implement business logic

Python, JS,
SQL,...

Data
Analyst

Expert of clinics and
EHR/PM databases

SQL, R,...

Medical
Informaticist

Expert of medical data
representation, terminologies

Proprietary
tools

Flatiron
Nurse

Expert of treatment
workflows

English

Flatiron
Oncologist

Understands the disease
and treatment

English

Organizational Challenge

© 2015 Flatiron Health, Inc.

Organizational Challenge

Flatiron Data
Model

Provider A

Provider B

EHR

PMEHR

Provider C

Data Warehouse

t

© 2015 Flatiron Health, Inc.

Organizational Challenge

t

Flatiron Data
Model

Provider A

EMR

© 2015 Flatiron Health, Inc.

Organizational Challenge

Flatiron data
model

Provider A

EMR

Conway’s law (1968):
organizations which design systems ... are constrained to
produce designs which are copies of the communication
structures of these organizations...

© 2015 Flatiron Health, Inc.

Organizational Challenge

© 2015 Flatiron Health, Inc.

Organizational Challenge: Summary

Integrating a clinic requires
multidisciplinary expertise
Hand-off between disciplines
required a lot of back-and forth
Initial attempt produced codebase
difficult to understand, hard to
reuse, hard to maintain
Clash between agile process and unpredictable
external feedback

© 2015 Flatiron Health, Inc.

Agenda

● Introduction
● Problem definition:

○ Task
○ Challenges

■ Data
■ Organizational

● Our approach:
○ What we built to address that
○ Challenges
○ Evolution

● Summary

© 2015 Flatiron Health, Inc.

Our Data Integration requirements

- Optimize for latency to client feedback:
- Limit multidisciplinary handoffs
- Optimize experimentation/invention process

- Support healthcare data sources:
- make it easy to add client specific logic
- make it easy to reuse logic
- make it secure (protect health information)

© 2015 Flatiron Health, Inc.

1st realization - ETL framework

Data pipeline /
ETL

Per client:Framework:

Declarative
Domain

Configuration ...
Declarative

Domain
Configuration

Separation of concerns: an analyst can be fully productive
with SQL alone (or R or ...).
No more business logic handoffs, redundant knowledge
transfer lag, and its debugging

© 2015 Flatiron Health, Inc.

1st realization - ETL framework

Flatiron Data
Model

t

Provider A

EMR

Data Analyst

Medical Informaticist

© 2015 Flatiron Health, Inc.

Our Data Integration requirements

- Optimize for latency to client feedback:
- Limit multidisciplinary handoffs
- Optimize experimentation/invention process

- Support healthcare data sources:
- make it easy to add client specific logic
- make it easy to reuse logic
- secure protected health information

© 2015 Flatiron Health, Inc.

VFS

Node DAG Worker

JobSpec

Content
Addressable
Blob Storage

Jobs Results
Pipeline Manifest

Dispatcher

H()

Our ETL Framework -
High level architecture

H()
...

ETL Configuration

Runtime

Results / execution artifacts

© 2015 Flatiron Health, Inc.

ETL Representation

Complex transformation broken
to a series of simpler
transformation represented as
directed acyclic graph.

Each node:
Input: A set of tables (nodes)
Transformation: A simple SQL,
Python, R, Bash transform
Output: A single table

© 2015 Flatiron Health, Inc.

ETL Representation

Complex transformation broken
to a series of simpler
transformation represented as
directed acyclic graph.

Each node:
Input: A set of tables (nodes)
Transformation: A simple SQL,
Python, R, Bash transform
Output: A single table

© 2015 Flatiron Health, Inc.

ETL Representation

Nodes can input and output
CSVs.
ETL graph representation is
agnostic to specific languages.

Adding a transformation node in
any language is as easy as
adding several lines in the
framework’s code.

© 2015 Flatiron Health, Inc.

In practice

This is the main user
interface

Source file

Patient.sql

SELECT Pat_ID1
FROM …;

© 2015 Flatiron Health, Inc.

In practice - dependencies

Patient Extract

@include
action/sql/sqlite

Physician Extract

@include
action/sql/sqlite

PatientPhysician

@include
action/sql/sqlite
@depend ./Patient
@depend ./Physician

© 2015 Flatiron Health, Inc.

ETL Representation

● Text representation
○ Each independent

pipeline is a directory
○ Each transformation is a

file
○ Directives in file define

dependencies
● Git

○ Versioning
○ Branch == Experiment
○ Easy branching...

VFS

Node DAG

© 2015 Flatiron Health, Inc.

● VFS enables richness
of directives

● Introduction of OO concepts and meta
programming world to the ETL world
○ Inheritance and polymorphism of one more groups of

transformations
○ Templating (parameter substitution)

● Adding a new clinic
○ In many cases, as easy as a set of include directives,

overriding several nodes

ETL Representation

VFS

Node DAG

© 2015 Flatiron Health, Inc.

Varian (common)ClinicA

Patient Extract

@include
action/sql/sqlite

Physician Extract

@include
action/sql/sqlite

PatientPhysician

@include
action/sql/sqlite
@depend ./Patient
@depend ./Physician

ClinicB

Varian

@include common/varian

Varian

@include common/varian

In practice - node reuse

© 2015 Flatiron Health, Inc.

In practice - node override

Varian (common)ClinicA

Patient extract

@include
action/sql/sqlite

Physician extract

@include
action/sql/sqlite

Patient Physician

@include
action/sql/sqlite
@depend ./Patient
@depend ./Physician

Varian

@include common/mosaiq

Physician extract

@include
action/sql/sqlite

© 2015 Flatiron Health, Inc.

Our Data Integration requirements

- Optimize for latency to client feedback:
- Limit multidisciplinary handoffs
- Optimize experimentation/invention process

- Support healthcare data sources:
- make it easy to add client specific logic
- make it easy to reuse logic
- secure protected health information

© 2015 Flatiron Health, Inc.

Execution artifacts
caching

● Our node transformations are deterministic
functions:

f(input tables, node code) = output table

● We can cache results using the following key:
Hash(input tables, node code)

● We cache results in an immutable centralized
key value store (currently S3)

© 2015 Flatiron Health, Inc.

Execution artifacts
caching

@include action/sql/sqlite
@depend ./DrugMetadata
@depend ./DrugList

SELECT C1, C2
JOIN …
….

A: AltosDrug.sql

1,Tylenol,100mg,..
2, B12, 50mg,...
3, Carboplatin, 10ml
...

Tylenol,acetaminophen,...
B12, cyanocobalamin,...
Abraxane, paclitaxel,...
Onxol, paclitaxel,...
….

B: DrugList.csv C: DrugMetadata.csv

Key = SHA256(A||B||C)

© 2015 Flatiron Health, Inc.

Execution artifacts
caching

@include action/sql/sqlite
@depend ./DrugMetadata
@depend ./DrugList

SELECT C1, C2
JOIN …
….

A: AltosDrug.sql

1,Tylenol,100mg,..
2, B12, 50mg,...
3, Carboplatin, 10ml
...

Tylenol,acetaminophen,...
B12, cyanocobalamin,...
Abraxane, paclitaxel,...
Onxol, paclitaxel,...
….

B: DrugList.csv C: DrugMetadata.csv

Key = SHA256(A||B||C)

Production

@include action/sql/sqlite
@depend ./DrugMetadata
@depend ./DrugList

SELECT C1, C3
JOIN …
….

A’: AltosDrug.sql

Experiment

Key’ = SHA256(A’
||B||C)

© 2015 Flatiron Health, Inc.

Cache in action -
2nd example

Latest production run results

© 2015 Flatiron Health, Inc.

Cache in action -
2nd example

Changed

One transformation file changed

© 2015 Flatiron Health, Inc.

Cache in action -
2nd example

Limited subgraph needs recompute
Changed

© 2015 Flatiron Health, Inc.

Quick experimentation

● Surgically changing a very complex pipeline
is fast
○ Branching is easy (as any other code branch in Git)
○ Overriding a node is easy (think OO)
○ Need to recompute only one path of the DAG, all

other freshest data is ready

● Our data analysts can experiment
independently:
○ Need to know SQL/R code
○ Need to know how to commit code to Git

© 2015 Flatiron Health, Inc.

Continuous data ingestion

● For specific pipelines (ETL graphs)
○ Whenever we check-in a new node (or a node

update) we recompute the pipeline
○ Cache of intermediates makes this efficient

● Basically a continuous integration test
● Allows testing and development with most

recent data
● Data artifacts are computed, stored, and

ready for reuse - “Warms the cache”

© 2015 Flatiron Health, Inc.

Our Data Integration requirements

- Optimize for latency to client feedback:
- Limit multidisciplinary handoffs
- Optimize experimentation/invention process

- Support healthcare data sources:
- make it easy to add client specific logic
- make it easy to reuse logic
- secure protected health information

© 2015 Flatiron Health, Inc.

Security for Protected Health
Information

● Exchanging cache keys (secure hashes)
instead of actual data
○ Central storage - central governance
○ Immutable storage - supports auditing and data

provenance requirements.
■ For each pipeline run we store a manifest which

lists all the artifacts for that run.

© 2015 Flatiron Health, Inc.

Bottom Line

© 2015 Flatiron Health, Inc.

Challenges

● Homegrown tool
○ Rebuilding the wings of an airplane while flying
○ Training engineers and non-engineers on a

homegrown tool
○ Lack of a development environment (everything

beyond text tools)
● The tool is only one part of the equation:

○ Tool is used in use cases not planned for (great, but
fails in new ways)

○ Production == Experimentation
■ Empowerment of non-engineers
■ A lot of ‘engineering skills’ to teach

© 2015 Flatiron Health, Inc.

Evolution

● Building a startup does not end with
experimentation
○ Tool built in our ‘invent’ phase.
○ We successfully supported the business…

○ Now, this aspect of the company switched to the
‘scaling’ phase

● Business requirement expanded from
“integrate as quickly as you can” to “do that,
and have a stable nightly pipeline”

© 2015 Flatiron Health, Inc.

Evolution

● We built a lot around this ETL framework:
○ Pipelines scheduling system
○ Running multiple pipelines including running stable

(old) versions of ETL nodes to guarantee fresh data

● Ongoing work:
○ Mature testing framework
○ Optimization for large data sets / streaming

(incremental ETL). Started to become an issue two
years in.

○ Various aspects of robustness

© 2015 Flatiron Health, Inc.

Summary

● Architectural concepts contributing to quick
ETL experimentation:
○ Text based branching for ETL configuration (Git FTW)
○ Introduction of OO concepts to ETL
○ Caching based on hash of code and inputs
○ Continuous data ingestion

© 2015 Flatiron Health, Inc.

Summary

● You can write code with an Oncologist in the
room

● Technology is as useful as its compatibility
with:
○ People operating it:

■ Making specialists independent was key
○ Business requirement: pivoting product lines vs

Performance / Robustness

© 2015 Flatiron Health, Inc.

Special Thanks

KEEP CALM

AND

KICK CANCER’S ASS

Shameless plug: We are hiring!
Drop me a note at gil@flatiron.com or visit
http://flatiron.com

mailto:gil@flatiron.com
http://flatiron.com/careers
http://flatiron.com/careers

