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About me: Matt Schuetze

> Product Management Director
at Azul Systems

> Translate Voice of Customer
Into Zing and Zulu
requirements and work items

> SIng the praises of Azul efforts
through product launches

» Azul alternate on JCP exec
committee, co-lead Detroit
Java User Group

» Stand on the shoulders of
glants and admit it

6/12/2015




Philosophy and motivation

What do we actually care about. And why?
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Latency Behavior

> Latency: The time It took one operatioh to
happen

> Each operation occurrence has its own
latency

> What we care about i1s how latency
behaves

> Behavior is a lot more than “the common
case was X’

AZUL
6/12/2015 ASYSTlEJM se



We like to look at charts

05%’ile

Server side page request time

The "We only want to show good things” chart
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What do you care about?

Do you :

Care about latency In your system?

Care about the worst case?

Care about the 99.99%’ile?

Only care about the fastest thing in the day?
Only care about the best 50%

Only need 90% of operations to meet
requirements?

8 6/12/2015 SYSTEMS®
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We like to rant about latency

CTO and co-founder
of Azul Systems.

Blog Archive

(8)
(8)

#LatencyTipOfTheDay: Median
Server Response Time: ...

#LatencyTipOfTheDay: MOST
page loads will experien...

#LatencyTipOfTheDay: Q:
What's wrong with this pic...

#LatencyTipOfTheDay: If you
are not measuring and/...

#LatencyTipOfTheDay: Average
(def): a random numbe...

6/12/2015

Saturday, June 21, 2014

#LatencyTipOfTheDay: Q: What's wrong with this
picture? A: Everything!

Question: What's wrong with this picture:

Server side page request time

Answer: Everything!

AZUL
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“outliers”, “averages” and other nonsense

Hiccups by Time Interval

Max per Interval =—95% ===00.90% =-—=99,899% =—M\ax
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Elapsed Time (sec)
99%‘ile is ~60 usec. We nicknamed these

(but mean is ~210usec) spikes “hiccups”
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Dispelling standard deviation

Latency by Percentile Distribution
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Dispelling standard deviation

Latency by Percentile Distribution

=0

Mean = 0.06 msec
Std. Deviation (o) = 0.21msec

99.999% = 38.66msec _|_>
~184 O (111 away from the mean
In a normal distribution,
the 99.999%'ile falls within 4.5 O _
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These are NOT normal distributions
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Is the 99%’ile “rare”?

19 6/12/2015 SYSTEMS®



Cumulative probability...

What are the chances of a single web page
view experiencing the 99%/’ile latency of:

- A single search engine node?
- A single Key/Value store node?
- A single Database node?

- A single CDN request?

20 6/12/2015 SYSTEMS®
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page loads that would

Site # of requests || experience the 99%'lie
[(1-(.99 * N))*100%]
amazon.com 190 85.2%
kohls.com 204 87.1%
jecrew.com 112 67.6%
saksfifthavenue.com 109 66.5%
nytimes.com 173 82.4%
cnn.com 279 93.9%
twitter.com 87 58.3%
pinterest.com 84 57.0%
facebook.com 178 83.3%
google.con'] | 31 26.7%
(yes, that simple noise-free page)
google.com 76 53 4%

search for "http requests per page"

AZUL

SYSTEMS®



Which HTTP response time metric
IS more “representative” of user
experience?

The 95%’ile or the 99.9%’ile

SYSTEMS®
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Gauging user experience

Example: A typical user session involves 5 page loads,
averaging 40 resources per page.

- How many of our users will NOT experience something
worse than the 95%’ile?

Answer: ~0.003%

- How many of our users will experience at least one
response that is longer than the 99.9%'ile?

Answer: ~18%

6/12/2015 SYSTEMS®



Classic look at response time behavior

source: IBM CICS server documentation, “understanding response times”

Response time as a function of load

| © Unacceptable {poor) response time

Average?
Max? /

Median?
90%? f
99.9% /

24 6/12/2015 AAE?MI;@J
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Hiccups are strongly multi-modal

> They don’t look anything like a normal distribution

> A complete shift from one mode/behavior to another
> Mode A: “good”.

> Mode B: "Somewhat bad”

> Mode C: “terrible’, ...

> The real world is not a gentle, smooth curve

> Mode transitions are “phase changes”

SYSTEMS®



Proven ways to deal with hiccups

Actually characterizing latency
Requirements

Hiccups by Percentile Distribution Response T| me

/— Percentile plot
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Comparing Behavior

Different throughputs, configurations, or other parameters on one graph

Duration by Percentile Distribution
120
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Shameless Bragging L
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Comparing Behaviors - Actual

Latency sensitive messaging distribution application: HotSpot vs. Zing

Latency by Percentile Distribution
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ZIng

> A standards-compliant JVM for Linux/x86 servers

> Eliminates Garbage Collection as a concern for
enterprise applications in Java, Scala, or any JVM
language

> Very wide operating range: Used In both low latency and
large scale enterprise application spaces

> Decouples scale metrics from response time concerns

Transaction rate, data set size, concurrent users, heap
size, allocation rate, mutation rate, etc.

> Leverages elastic memory for resilient operation

32 6/12/2015 SYSTEMS®



What is Zing good for?

> If you have a server-based Java application

> And you are running on Linux
> And you use using more than ~300MB of
memory, up to as high as 1TB memory,

> Then Zing will likely deliver superior behavior
metrics

33333333333

SYSTEMS®



Where Zing shines

> Low latency
Eliminate behavior blips down to the sub-millisecond-units level

> Machine-to-machine “stuff’
Support higher *sustainable* throughput (one that meets SLAS)
Messaging, gueues, market data feeds, fraud detection, analytics

> Human response times

Eliminate user-annoying response time blips. Multi-second and
even fraction-of-a-second blips will be completely gone.

Support larger memory JVMs *If needed* (e.g. larger virtual user
counts, or larger cache, in-memory state, or consolidating multiple

Instances)
> “Large” data and in-memory analytics

Make batch stuff “business real time”. Gain super-efficiencies.

Cassandra, Spark, Solr, DataGrid, any large dataset in fast motion
34 6/12/2015 ﬁszr?mlgo



The coordinated omission
problem

An accidental conspiracy...

35 6/12/2015 SYSTEMS®



The coordinated omission problem

> Common load testing example:

—each “client” issues requests at a certain rate
—measure/log response time for each request

> S0 what's wrong with that?

—works only if ALL responses fit within interval
— implicit "automatic back off” coordination

» Begin audience participation exercise now...

36 6/12/2015 SYSTEMS®



IS coordinated omission rare?

It is MUCH more common than you
may think...

37 6/12/2015 SYSTEMS®
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JMeter makes this mistake...

And so do other tools!

W HTTP Request
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4 500
4 000

3

£ 3500

@ 3000
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6/12/2015

40.0 50.0 60.0 70.0 80.0 90.0 100.0
Percentiles

AZUL

SYSTEMS®



39

Real World Coordinated Omission effects

Before
Correction

After
Correction

6/12/2015
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Real World Coordinated Omission effects
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500000

400000

300000

Duration (usec)

200000

100000

Duration by Percentile Distribution

Uncorrected Data

0% S50%

6/12/2015

89%

§95.9%

59.99%

§95.999%

55.99599%

Percentile

A»AZUL
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Real World Coordinated Omission effects

Duration by Percentile Distribution
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Real World Coordinated Omission effects

Why | care

600000

Duration by Percentile Distribution
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How “real” people react

Kelly Sommers @kellabyte 2d
LOL at how badly we all benchmark. Blue is how most of us are
benchmarking, Red is the actual truth i.imgur.com/HYoWEuU6.png

Latency by Percentile Distribution

100 o

75

50

Latency (milliseconds)

25

0% 90% 99% 99.9% 99.99% 99.999% 99.9999%
Percentile
M haywire_768_pipelined_uncorrected.hdr [l haywire_768_pipelined_corrected.hdr

Leandro Pereira @lafp ‘
kellabyte Blue, you believe in whatever you want to believe. Red,
you wake up in Wonderland and see how deep the rabbit hole goes.

43 6/12/2015 ﬁsleEka@



Suggestions

> Whatever your measurement technique is, test It.

> Run your measurement method against artificial systems
that create hypothetical pauses scenarios. See if your
reported results agree with how you would describe that
system behavior

> Don’t waste time analyzing until you establish sanity
> Don’t ever use or derive from standard deviation

> Always measure Max time. Consider what it means...
> Be suspicious.

> Measure %’iles. Lots of them.

44 6/12/2015 SYSTEMS®



HdrHistogram
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HdrHistogram

If you want to be able to produce charts like this...

Latency by Percentile Distribution
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Then you need both good dynamic range and good resolution
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Google Maps The Register TheServerSide

hdrhistogram.org &

Research v News v UIUC v eBay v Mechanical-Sympathy FoJC blogger

yram/HdrHisto...

mint_compare_exchang... YOW 2014 Speakers Gu...

JetBrains Store FileChannel (Java Pl

HdrHistogram
A High Dynamic Range (HDR) Histogram

View the Project on GitHub

HdrHistogram/HdrHistogram
(Java, C, and C# versions)

View the Project JavaDoc
hdrhistogram.github.com/HdrHistogram/JavaDoc

Download Download
ZIP File TAR Ball
View On

GitHub

2l g

Plot hisgram
file(s)

An example plot of an HdrHistogram based
full percentile spectrum plot:

Response Time by Percentile Distribution

Percentile
== Response time by percentile Expected Service Level

6/12/2015

HdrHistogram: A High Dynamic Range Histogram.

A Histogram that supports recording and analyzing sampled data value counts across
a configurable integer value range with configurable value precision within the range.
Value precision is expressed as the number of significant digits in the value recording,
and provides control over value quantization behavior across the value range and the
subseguent value resolution at any given level.

For example, a Histogram could be configured to track the counts of observed integer
values between O and 3,600,000,000 while maintaining a value precision of 3
significant digits across that range. Value quantization within the range will thus be no
larger than 1/1,000th (or 0.1%) of any value. This example Histogram could be used to
track and analyze the counts of observed response times ranging between 1
microsecond and 1 hour in magnitude, while maintaining a value resolution of 1
microsecond up to 1 millisecond, a resolution of 1 millisecond (or better) upto one
second, and a resolution of 1 second (or better) up to 1,000 seconds. At it's maximum
tracked value (1 hour), it would still maintain a resolution of 3.6 seconds (or better).

HDR Histogram is designed for recoding histograms of value measurements in latency
and performance sensitive applications. Measurements show value recording times as
low as 3-6 nanoseconds on modern (circa 2014) Intel CPUs. The HDR Histogram
maintains a fixed cost in both space and time. A Histogram's memory footprint is
constant, with no allocation operations involved in recording data values or initerating
through them. The memory footprint is fixed regardless of the number of data value
samples recorded, and depends solely on the dynamic range and precision chosen. The
amount of work involved in recording a sample is constant, and directly computes
storage index locations such that no iteration or searching is ever involved in recording
data values.

Authors, Contributors, and License

HdrHistogram was authored by Gil Tene (@giltene) (original and Java version), with
ports by Mike Barker (@mikeb01) (C), and Matt Warren (@mattwarren) (C#), and
placed in the public domain, as explained at
http://creativecommons.org/publicdomain/zero/1.0/

Support or Contact

Don't call me, I won't call you. AZUL

SYSTEMS®
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Google Maps The Register TheServerSide Apple v Research v News v UIUC v eBay v Mechanical-Sympathy FoJC blogger +

togram Plotter

> files selected

Wict file(s) above.

Latency by Percentile Distribution
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Latency time units: ( milliseconds %) Export Image

Percentile range:

99.99999%

*** Note: Input files are expected to be in the .hgrm format produced by HistogramlogProcessor, or the percentile output format for HdrHistogram. See example file format here
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Shape of Constant latency

Latency (microseconds)

6/12/2015

40,000

30,000

20,000

10,000

Latency by Percentile Distribution
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B fixedlat40K.hgrm M fixedlat10K.hgrm

10K fixed line latency

99.9999%

AZUL
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Shape of Gaussian latency

Latency by Percentile Distribution
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Gaussian noise (std dev. = 5K)
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Shape of Random latency

Latency by Percentile Distribution
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10K fixed line latency with added
Gaussian (std dev. = 5K) vs. random (+5K)
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Shape of Stalling latency

Latency by Percentile Distribution
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10K fixed base, stall magnitude of 50K
stall likelihood = 0.00005 (interval = 100)
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Shape of Queuing latency

Latency by Percentile Distribution
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handling time = 100, burst likelihood = 0.00005
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Shape of Multi Modal latency

Latency (milliseconds)

Latency by Percentile Distribution
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10K modeO 70K model (likelihood 0.01)
180K mode?2 (likelihood 0.00001)

AZUL
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And this what the real(?) world
sometimes looks like...

Latency by Percentile Distribution

80 =
_’g 60 4/_/ /7
L’B’ 20 //
) = — o ]
0% 90% 99% 99.9% 99.99% 99.999% 99.9999%
Percentile
B haywire_100k_pipelined_uncorrected.hdr [l haywire_100k_pipelined_corrected.hdr h2o_100k_pipelined_uncorrected.hdr 12 p
. 1 Kelly Sommers
i @kellabyte
giltene Yeah. | have no idea how to do that yet. Ll m
is going on in the code here?! i.imgur.com/XMYHB2w.png
11/15/14, 1:29 AM
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Real world “deductive reasoning”

Latency by Per e Distribution
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JHiccup
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Discontinuity in Java execution

Hiccups by Time Interval
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Oracle HotSpot ParallelGC Oracle HotSpot G1

Hiccups by Time Interval Hiccups by Time Interval
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1GB live set in 8GB heap, same app, same HotSpot, different GC
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Oracle HotSpot CMS Zing Pauseless GC

Hiccups by Time Interval Hiccups by Time Interval
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1GB live set in 8GB heap, same app, different JVM/GC
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Oracle HotSpot CMS

Hiccups by Time Interval
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Zing Pauseless GC

Hiccups by Time Interval

Max per Interval ===99% =—=93.90% =—=599.99% =—Max
0 500 1000 1500 2000 2500 3000 3500
Elapsed Time (sec)
Hiccups by Percentile Distribution
0% Max=Zh.384 9%% 99.9% 99.99% 99.999% 99.95999%
Percentile

1GB live set in 8GB heap, same app, different JVM/GC- drawn to scale
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Oracle HotSpot (pure NewGen) Zing Pauseless GC

Hiccups by Time Interval Hiccups by Time Interval
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Low latency trading application
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Oracle HotSpot (pure NewGen) Zing Pauseless GC

Hiccups by Time Interval Hiccups by Time Interval
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Oracle HotSpot (pure NewGen) Zing Pauseless GC
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Q&A

www.azul.com

Www.Jhiccup.com

www.hdrhistogram.com

@schuetzematt
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https://github.com/LatencyUtils/LatencyUtils

