
© Copyright Azul Systems 2015

© Copyright Azul Systems 2015

@azulsystems

How NOT to
Measure Latency

Matt Schuetze

Product Management Director, Azul Systems

6/12/2015 1

QCon NY

Brooklyn, New York

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

© Copyright Azul Systems 2015

© Copyright Azul Systems 2015

@azulsystems

Understanding Latency and
Application Responsiveness

Matt Schuetze

Product Management Director, Azul Systems

6/12/2015 2

QCon NY

Brooklyn, New York

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

© Copyright Azul Systems 2015

© Copyright Azul Systems 2015

@azulsystems

The Oh $@%T! talk.

Matt Schuetze

Product Management Director, Azul Systems

6/12/2015 3

QCon NY

Brooklyn, New York

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

© Copyright Azul Systems 2015

About me: Matt Schuetze

 Product Management Director

at Azul Systems

 Translate Voice of Customer

into Zing and Zulu

requirements and work items

 Sing the praises of Azul efforts

through product launches

 Azul alternate on JCP exec

committee, co-lead Detroit

Java User Group

 Stand on the shoulders of

giants and admit it

6/12/2015 4

© Copyright Azul Systems 2015

Philosophy and motivation

What do we actually care about. And why?

6/12/2015 5

© Copyright Azul Systems 2015

Latency Behavior

 Latency: The time it took one operation to

happen

 Each operation occurrence has its own

latency

 What we care about is how latency

behaves

 Behavior is a lot more than “the common

case was X”

6/12/2015 6

© Copyright Azul Systems 2015 ©2013 Azul Systems, Inc.

95%’ile

The “We only want to show good things” chart

We like to look at charts

6/12/2015 7

© Copyright Azul Systems 2015

What do you care about?

 Do you :

 Care about latency in your system?

 Care about the worst case?

 Care about the 99.99%’ile?

 Only care about the fastest thing in the day?

 Only care about the best 50%

 Only need 90% of operations to meet

requirements?

6/12/2015 8

© Copyright Azul Systems 2015 ©2013 Azul Systems, Inc.

We like to rant about latency

6/12/2015 15

© Copyright Azul Systems 2015

99%‘ile is ~60 usec.

(but mean is ~210usec)

“outliers”, “averages” and other nonsense

We nicknamed these

spikes “hiccups”
6/12/2015 16

© Copyright Azul Systems 2015

Dispelling standard deviation

6/12/2015 17

© Copyright Azul Systems 2015

Mean = 0.06 msec

Std. Deviation (𝞂) = 0.21msec

99.999% = 38.66msec

In a normal distribution,

These are NOT normal distributions

~184 σ (!!!) away from the mean

the 99.999%’ile falls within 4.5 σ

Dispelling standard deviation

6/12/2015 18

© Copyright Azul Systems 2015

Is the 99%’ile “rare”?

6/12/2015 19

© Copyright Azul Systems 2015

What are the chances of a single web page

view experiencing the 99%’ile latency of:

- A single search engine node?

- A single Key/Value store node?

- A single Database node?

- A single CDN request?

Cumulative probability…

6/12/2015 20

© Copyright Azul Systems 2015 6/12/2015 21

© Copyright Azul Systems 2015

Which HTTP response time metric

is more “representative” of user

experience?

The 95%’ile or the 99.9%’ile

6/12/2015 22

© Copyright Azul Systems 2015

Example: A typical user session involves 5 page loads,

averaging 40 resources per page.

- How many of our users will NOT experience something

worse than the 95%’ile?

Answer: ~0.003%

- How many of our users will experience at least one

response that is longer than the 99.9%’ile?

Answer: ~18%

Gauging user experience

6/12/2015 23

© Copyright Azul Systems 2015

Classic look at response time behavior

Response time as a function of load

source: IBM CICS server documentation, “understanding response times”

Average?

Max?

Median?

90%?

99.9%

6/12/2015 24

© Copyright Azul Systems 2015

Hiccups are strongly multi-modal

 They don’t look anything like a normal distribution

 A complete shift from one mode/behavior to another

 Mode A: “good”.

 Mode B: “Somewhat bad”

 Mode C: “terrible”, ...

 The real world is not a gentle, smooth curve

 Mode transitions are “phase changes”

6/12/2015 25

© Copyright Azul Systems 2015

Proven ways to deal with hiccups

Actually characterizing latency

Requirements

Response Time

Percentile plot

line

6/12/2015 26

© Copyright Azul Systems 2015

Different throughputs, configurations, or other parameters on one graph

Comparing Behavior

6/12/2015 29

© Copyright Azul Systems 2015

Shameless Bragging

6/12/2015 30

© Copyright Azul Systems 2015

Comparing Behaviors - Actual
Latency sensitive messaging distribution application: HotSpot vs. Zing

6/12/2015 31

© Copyright Azul Systems 2015

Zing

 A standards-compliant JVM for Linux/x86 servers

 Eliminates Garbage Collection as a concern for

enterprise applications in Java, Scala, or any JVM

language

 Very wide operating range: Used in both low latency and

large scale enterprise application spaces

 Decouples scale metrics from response time concerns

Transaction rate, data set size, concurrent users, heap

size, allocation rate, mutation rate, etc.

 Leverages elastic memory for resilient operation

6/12/2015 32

© Copyright Azul Systems 2015

What is Zing good for?

 If you have a server-based Java application

And you are running on Linux

And you use using more than ~300MB of

memory, up to as high as 1TB memory,

Then Zing will likely deliver superior behavior

metrics

6/12/2015 33

© Copyright Azul Systems 2015

Where Zing shines

 Low latency

Eliminate behavior blips down to the sub-millisecond-units level

 Machine-to-machine “stuff”

Support higher *sustainable* throughput (one that meets SLAs)

Messaging, queues, market data feeds, fraud detection, analytics

 Human response times

Eliminate user-annoying response time blips. Multi-second and

even fraction-of-a-second blips will be completely gone.

Support larger memory JVMs *if needed* (e.g. larger virtual user

counts, or larger cache, in-memory state, or consolidating multiple

instances)

 “Large” data and in-memory analytics

Make batch stuff “business real time”. Gain super-efficiencies.

Cassandra, Spark, Solr, DataGrid, any large dataset in fast motion
6/12/2015 34

© Copyright Azul Systems 2015

An accidental conspiracy...

The coordinated omission
problem

6/12/2015 35

© Copyright Azul Systems 2015

The coordinated omission problem

Common load testing example:

– each “client” issues requests at a certain rate

– measure/log response time for each request

So what’s wrong with that?

– works only if ALL responses fit within interval

– implicit “automatic back off” coordination

Begin audience participation exercise now…

6/12/2015 36

© Copyright Azul Systems 2015

It is MUCH more common than you

may think...

Is coordinated omission rare?

6/12/2015 37

© Copyright Azul Systems 2015

Before

Correction

After

Correcting

for

Omission

JMeter makes this mistake...
And so do other tools!

6/12/2015 38

© Copyright Azul Systems 2015

Before
Correction

After
Correction

Wrong

by 7x

Real World Coordinated Omission effects

6/12/2015 39

© Copyright Azul Systems 2015

Uncorrected Data

Real World Coordinated Omission effects

6/12/2015 40

© Copyright Azul Systems 2015

Uncorrected Data

Corrected for

Coordinated

Omission

Real World Coordinated Omission effects

6/12/2015 41

© Copyright Azul Systems 2015

A ~2500x

difference in

reported

percentile levels

for the problem

that Zing

eliminates
Zing

“other” JVM

Real World Coordinated Omission effects
Why I care

6/12/2015 42

© Copyright Azul Systems 2015

How “real” people react

6/12/2015 43

© Copyright Azul Systems 2015

Suggestions

 Whatever your measurement technique is, test it.

 Run your measurement method against artificial systems

that create hypothetical pauses scenarios. See if your

reported results agree with how you would describe that

system behavior

 Don’t waste time analyzing until you establish sanity

 Don’t ever use or derive from standard deviation

 Always measure Max time. Consider what it means...

 Be suspicious.

 Measure %‘iles. Lots of them.

6/12/2015 44

© Copyright Azul Systems 2015

HdrHistogram

6/12/2015 45

© Copyright Azul Systems 2015

Then you need both good dynamic range and good resolution

HdrHistogram

If you want to be able to produce charts like this...

6/12/2015 46

© Copyright Azul Systems 2015 6/12/2015 48

© Copyright Azul Systems 2015 6/12/2015 49

© Copyright Azul Systems 2015

Shape of Constant latency

10K fixed line latency
6/12/2015 50

© Copyright Azul Systems 2015

Shape of Gaussian latency

10K fixed line latency with added

Gaussian noise (std dev. = 5K)
6/12/2015 51

© Copyright Azul Systems 2015

Shape of Random latency

10K fixed line latency with added

Gaussian (std dev. = 5K) vs. random (+5K)
6/12/2015 52

© Copyright Azul Systems 2015

Shape of Stalling latency

10K fixed base, stall magnitude of 50K

stall likelihood = 0.00005 (interval = 100)
6/12/2015 53

© Copyright Azul Systems 2015

Shape of Queuing latency

10K fixed base, occasional bursts of 500 msgs

handling time = 100, burst likelihood = 0.00005
6/12/2015 54

© Copyright Azul Systems 2015

Shape of Multi Modal latency

10K mode0 70K mode1 (likelihood 0.01)

180K mode2 (likelihood 0.00001)
6/12/2015 55

© Copyright Azul Systems 2015

And this what the real(?) world

sometimes looks like…

6/12/2015 56

© Copyright Azul Systems 2015

Real world “deductive reasoning”

6/12/2015 57

© Copyright Azul Systems 2015

http://www.jhiccup.org

6/12/2015 58

© Copyright Azul Systems 2015

jHiccup

6/12/2015 59

© Copyright Azul Systems 2015

Discontinuity in Java execution

6/12/2015 60

© Copyright Azul Systems 2015

Examples

6/12/2015 63

© Copyright Azul Systems 2015

Oracle HotSpot ParallelGC Oracle HotSpot G1

1GB live set in 8GB heap, same app, same HotSpot, different GC

6/12/2015 64

© Copyright Azul Systems 2015

Oracle HotSpot CMS Zing Pauseless GC

1GB live set in 8GB heap, same app, different JVM/GC

6/12/2015 65

© Copyright Azul Systems 2015

Oracle HotSpot CMS Zing Pauseless GC

1GB live set in 8GB heap, same app, different JVM/GC- drawn to scale

6/12/2015 66

© Copyright Azul Systems 2015

Zing

Low latency trading application

Oracle HotSpot (pure NewGen) Zing Pauseless GC

6/12/2015 67

© Copyright Azul Systems 2015

Oracle HotSpot (pure newgen) Zing Oracle HotSpot (pure newgen)

Low latency trading application

Oracle HotSpot (pure NewGen) Zing Pauseless GC

6/12/2015 68

© Copyright Azul Systems 2015

Oracle HotSpot (pure newgen) Zing

Low latency trading application – drawn to scale

Oracle HotSpot (pure NewGen) Zing Pauseless GC

6/12/2015 69

© Copyright Azul Systems 2015

Q & A
www.azul.com

www.jhiccup.com

www.hdrhistogram.com

@schuetzematt

6/12/2015 70

https://github.com/LatencyUtils/LatencyUtils

