SYSTEMS®

How NOT to
Measure Latency

Matt Schuetze QCon NY
Product Management Director, Azul Systems Brooklyn, New York

,@azulsystems azulsystems.com

1 6/12/2015

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

SYSTEMS®

Understanding Latency and
Application Responsiveness

Matt Schuetze QCon NY
Product Management Director, Azul Systems Brooklyn, New York

’@ sssssssssss sssssssssss .com

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

AZUL

SYSTEMS®

The Oh $@%T! talk.

Matt Schuetze QCon NY
Product Management Director, Azul Systems Brooklyn, New York

,@azulsystems azulsystems.com
3 6/12/2015

mailto:@azulsystems
mailto:@azulsystems
http://www.azulsystems.com

4

About me: Matt Schuetze

> Product Management Director
at Azul Systems

> Translate Voice of Customer
Into Zing and Zulu
requirements and work items

> SIng the praises of Azul efforts
through product launches

» Azul alternate on JCP exec
committee, co-lead Detroit
Java User Group

» Stand on the shoulders of
glants and admit it

6/12/2015

Philosophy and motivation

What do we actually care about. And why?

5 6/12/2015 SYSTEMS®

Latency Behavior

> Latency: The time It took one operatioh to
happen

> Each operation occurrence has its own
latency

> What we care about i1s how latency
behaves

> Behavior is a lot more than “the common
case was X’

AZUL
6/12/2015 ASYSTlEJM se

We like to look at charts

05%’ile

Server side page request time

The "We only want to show good things” chart

7 6/12/2015 ﬁzl'lEjMI;@’

What do you care about?

Do you :

Care about latency In your system?

Care about the worst case?

Care about the 99.99%’ile?

Only care about the fastest thing in the day?
Only care about the best 50%

Only need 90% of operations to meet
requirements?

8 6/12/2015 SYSTEMS®

15

We like to rant about latency

CTO and co-founder
of Azul Systems.

Blog Archive

(8)
(8)

#LatencyTipOfTheDay: Median
Server Response Time: ...

#LatencyTipOfTheDay: MOST
page loads will experien...

#LatencyTipOfTheDay: Q:
What's wrong with this pic...

#LatencyTipOfTheDay: If you
are not measuring and/...

#LatencyTipOfTheDay: Average
(def): a random numbe...

6/12/2015

Saturday, June 21, 2014

#LatencyTipOfTheDay: Q: What's wrong with this
picture? A: Everything!

Question: What's wrong with this picture:

Server side page request time

Answer: Everything!

AZUL

SYSTEMS®

“outliers”, “averages” and other nonsense

Hiccups by Time Interval

Max per Interval =—95% ===00.90% =-—=99,899% =—M\ax
25

Ezu

E

5 15 .

-

S H | 1A/ T0L

g il | i I [0 IR ! |
100 200 300 400 500 e00

Elapsed Time (sec)
99%‘ile is ~60 usec. We nicknamed these

(but mean is ~210usec) spikes “hiccups”

16 6/12/2015 Aﬁslensjnk@

Dispelling standard deviation

Latency by Percentile Distribution

=0

40

Lid
=

—H

—D

Latency (msec)

Pud
=
m

—F

10

0% 90% 959% 95.9% 99.959% 99.995% 599.9999%

Percentile

17 6/12/2015 ﬁsleejmlgo

18

Dispelling standard deviation

Latency by Percentile Distribution

=0

Mean = 0.06 msec
Std. Deviation (o) = 0.21msec

99.999% = 38.66msec _|_>
~184 O (111 away from the mean
In a normal distribution,
the 99.999%'ile falls within 4.5 O _

40

Latency (msec)
Lid
Lo |

Pud
=
m

These are NOT normal distributions

10

0% 90% 959% 95.9% 99.959% 99.995% 599.9999%

Percentile

AZUL

SYSTEMS®

6/12/2015

Is the 99%’ile “rare”?

19 6/12/2015 SYSTEMS®

Cumulative probability...

What are the chances of a single web page
view experiencing the 99%/’ile latency of:

- A single search engine node?
- A single Key/Value store node?
- A single Database node?

- A single CDN request?

20 6/12/2015 SYSTEMS®

21

6/12/2015

page loads that would

Site # of requests || experience the 99%'lie
[(1-(.99 * N))*100%]
amazon.com 190 85.2%
kohls.com 204 87.1%
jecrew.com 112 67.6%
saksfifthavenue.com 109 66.5%
nytimes.com 173 82.4%
cnn.com 279 93.9%
twitter.com 87 58.3%
pinterest.com 84 57.0%
facebook.com 178 83.3%
google.con'] | 31 26.7%
(yes, that simple noise-free page)
google.com 76 53 4%

search for "http requests per page"

AZUL

SYSTEMS®

Which HTTP response time metric
IS more “representative” of user
experience?

The 95%’ile or the 99.9%’ile

SYSTEMS®

23

Gauging user experience

Example: A typical user session involves 5 page loads,
averaging 40 resources per page.

- How many of our users will NOT experience something
worse than the 95%’ile?

Answer: ~0.003%

- How many of our users will experience at least one
response that is longer than the 99.9%'ile?

Answer: ~18%

6/12/2015 SYSTEMS®

Classic look at response time behavior

source: IBM CICS server documentation, “understanding response times”

Response time as a function of load

| © Unacceptable {poor) response time

Average?
Max? /

Median?
90%? f
99.9% /

24 6/12/2015 AAE?MI;@J

25

Hiccups are strongly multi-modal

> They don’t look anything like a normal distribution

> A complete shift from one mode/behavior to another
> Mode A: “good”.

> Mode B: "Somewhat bad”

> Mode C: “terrible’, ...

> The real world is not a gentle, smooth curve

> Mode transitions are “phase changes”

SYSTEMS®

Proven ways to deal with hiccups

Actually characterizing latency
Requirements

Hiccups by Percentile Distribution Response T| me

/— Percentile plot

/ ine

e A% 99% 95.9% 99.,99% 99.999% 99.9999%

140

Hiccup Duration (msec)
=

=9 [(54 —_ Fod

e | e | e e | e |

fod
=

=

Percentile

===Hiccups by Percentile SLA

26 6/12/2015 a’ﬁsleejmlgo

Comparing Behavior

Different throughputs, configurations, or other parameters on one graph

Duration by Percentile Distribution
120

100 /_/__a—’_

a0

—S-Etup]
B0 —Setup E

Setup F

Duration (msec)

_SIE'tIJFI A
_SETIJFI B

a0 Setup C

20

0% 90% 99% 85.9% 95.95% 95.959%

Percentile

6/12/2015 SYSTE

Shameless Bragging L

30 6/12/2015 AQEEMI;O

31

Comparing Behaviors - Actual

Latency sensitive messaging distribution application: HotSpot vs. Zing

Latency by Percentile Distribution

90

80

70

i
-

-9
o

Latency (milliseconds)

w
o

J
O

[
o

o

0% 90% 99% 99.9% 99.99% 99.999%

Percentile |

6/12/2015 Aﬁﬁ?wk@

ZIng

> A standards-compliant JVM for Linux/x86 servers

> Eliminates Garbage Collection as a concern for
enterprise applications in Java, Scala, or any JVM
language

> Very wide operating range: Used In both low latency and
large scale enterprise application spaces

> Decouples scale metrics from response time concerns

Transaction rate, data set size, concurrent users, heap
size, allocation rate, mutation rate, etc.

> Leverages elastic memory for resilient operation

32 6/12/2015 SYSTEMS®

What is Zing good for?

> If you have a server-based Java application

> And you are running on Linux
> And you use using more than ~300MB of
memory, up to as high as 1TB memory,

> Then Zing will likely deliver superior behavior
metrics

33333333333

SYSTEMS®

Where Zing shines

> Low latency
Eliminate behavior blips down to the sub-millisecond-units level

> Machine-to-machine “stuff’
Support higher *sustainable* throughput (one that meets SLAS)
Messaging, gueues, market data feeds, fraud detection, analytics

> Human response times

Eliminate user-annoying response time blips. Multi-second and
even fraction-of-a-second blips will be completely gone.

Support larger memory JVMs *If needed* (e.g. larger virtual user
counts, or larger cache, in-memory state, or consolidating multiple

Instances)
> “Large” data and in-memory analytics

Make batch stuff “business real time”. Gain super-efficiencies.

Cassandra, Spark, Solr, DataGrid, any large dataset in fast motion
34 6/12/2015 ﬁszr?mlgo

The coordinated omission
problem

An accidental conspiracy...

35 6/12/2015 SYSTEMS®

The coordinated omission problem

> Common load testing example:

—each “client” issues requests at a certain rate
—measure/log response time for each request

> S0 what's wrong with that?

—works only if ALL responses fit within interval
— implicit "automatic back off” coordination

» Begin audience participation exercise now...

36 6/12/2015 SYSTEMS®

IS coordinated omission rare?

It is MUCH more common than you
may think...

37 6/12/2015 SYSTEMS®

38

JMeter makes this mistake...

And so do other tools!

W HTTP Request
5 000

4 500
4 000

3

£ 3500

@ 3000

Before ::w

= 2000

Correction s

1000
500

0
0.0 10.0 20.0

M Overall Response Times

Percentile value in ms

After ‘oo
Correcting
for -
Omission L

40.0 50.0 60.0 70.0 80.0 90.0 100.0
Percentiles

6/12/2015

40.0 50.0 60.0 70.0 80.0 90.0 100.0
Percentiles

AZUL

SYSTEMS®

39

Real World Coordinated Omission effects

Before
Correction

After
Correction

6/12/2015

5000
8000
7000

2 6000

L
E sooo
E 4000
al]

L]

® 3000
2000
1000

0

9000
8000
7000

Y 6000

1551
E so00
S 4000
o

]

W 3000
2000
1000

Uncorrected Latency by Percentile Distribution

Max=7995.39

90% 99% 99l W 999 99.999%

Percelitile

_- - Wrong
Corrected Latency by Perc . tile Distribution B by 7X

Max=7995.39

90% 99% 99.9% 99.99% 99.999%

Percentile
AZUL

SYSTEMS®

40

Real World Coordinated Omission effects

600000

500000

400000

300000

Duration (usec)

200000

100000

Duration by Percentile Distribution

Uncorrected Data

0% S50%

6/12/2015

89%

§95.9%

59.99%

§95.999%

55.99599%

Percentile

A»AZUL
SYSTEMS®

41

Real World Coordinated Omission effects

Duration by Percentile Distribution

Corrected for

600000

Coordinated —T
Omission *
400000
Fi
[T]
£ Uncorrected Data
.E 300000 m——HotSoot Base
E =HotSpot Correct edl
(] HotSpat Correct ed
200000 :
/E_/’J(
100000
0
0% 50% 99% 599.9% 99.99% 99.999% 99.9999%

Percentile

6/12/2015 AAE?MI;®

42

Real World Coordinated Omission effects

Why | care

600000

Duration by Percentile Distribution

“other” JV

500000 A ~2500X
difference In
reported

300000

Duration (usec)

fort

200000 t

100000
0
0% 90%
6/12/2015

percentile levels

ne problem
nat Zing

Iminates

89% §95.9%

59.99% §95.999% 55.99599%

-

Percentile

m——=HotSpot Base

m———HotSpot Correct edl
HotSgaot Correct edZ
——7ing Base
Zing Correctadl
Zing Corrected2

Zing

How “real” people react

Kelly Sommers @kellabyte 2d
LOL at how badly we all benchmark. Blue is how most of us are
benchmarking, Red is the actual truth i.imgur.com/HYoWEuU6.png

Latency by Percentile Distribution

100 o

75

50

Latency (milliseconds)

25

0% 90% 99% 99.9% 99.99% 99.999% 99.9999%
Percentile
M haywire_768_pipelined_uncorrected.hdr [l haywire_768_pipelined_corrected.hdr

Leandro Pereira @lafp ‘
kellabyte Blue, you believe in whatever you want to believe. Red,
you wake up in Wonderland and see how deep the rabbit hole goes.

43 6/12/2015 ﬁsleEka@

Suggestions

> Whatever your measurement technique is, test It.

> Run your measurement method against artificial systems
that create hypothetical pauses scenarios. See if your
reported results agree with how you would describe that
system behavior

> Don’t waste time analyzing until you establish sanity
> Don’t ever use or derive from standard deviation

> Always measure Max time. Consider what it means...
> Be suspicious.

> Measure %’iles. Lots of them.

44 6/12/2015 SYSTEMS®

HdrHistogram

55555555555 D AZYE.

HdrHistogram

If you want to be able to produce charts like this...

Latency by Percentile Distribution
160

140

Max=137.472

[
[eed
=

[
J
=

Latency (msec)
& ca
= =

=
=

Pud
=

-

0% 90% 99% 99.9% 99.959% 59.995% 99.9999%

Percentile

Then you need both good dynamic range and good resolution

46 6/12/2015 AASZT?MIEO

48

Google Maps The Register TheServerSide

hdrhistogram.org &

Research v News v UIUC v eBay v Mechanical-Sympathy FoJC blogger

yram/HdrHisto...

mint_compare_exchang... YOW 2014 Speakers Gu...

JetBrains Store FileChannel (Java Pl

HdrHistogram
A High Dynamic Range (HDR) Histogram

View the Project on GitHub

HdrHistogram/HdrHistogram
(Java, C, and C# versions)

View the Project JavaDoc
hdrhistogram.github.com/HdrHistogram/JavaDoc

Download Download
ZIP File TAR Ball
View On

GitHub

2l g

Plot hisgram
file(s)

An example plot of an HdrHistogram based
full percentile spectrum plot:

Response Time by Percentile Distribution

Percentile
== Response time by percentile Expected Service Level

6/12/2015

HdrHistogram: A High Dynamic Range Histogram.

A Histogram that supports recording and analyzing sampled data value counts across
a configurable integer value range with configurable value precision within the range.
Value precision is expressed as the number of significant digits in the value recording,
and provides control over value quantization behavior across the value range and the
subseguent value resolution at any given level.

For example, a Histogram could be configured to track the counts of observed integer
values between O and 3,600,000,000 while maintaining a value precision of 3
significant digits across that range. Value quantization within the range will thus be no
larger than 1/1,000th (or 0.1%) of any value. This example Histogram could be used to
track and analyze the counts of observed response times ranging between 1
microsecond and 1 hour in magnitude, while maintaining a value resolution of 1
microsecond up to 1 millisecond, a resolution of 1 millisecond (or better) upto one
second, and a resolution of 1 second (or better) up to 1,000 seconds. At it's maximum
tracked value (1 hour), it would still maintain a resolution of 3.6 seconds (or better).

HDR Histogram is designed for recoding histograms of value measurements in latency
and performance sensitive applications. Measurements show value recording times as
low as 3-6 nanoseconds on modern (circa 2014) Intel CPUs. The HDR Histogram
maintains a fixed cost in both space and time. A Histogram's memory footprint is
constant, with no allocation operations involved in recording data values or initerating
through them. The memory footprint is fixed regardless of the number of data value
samples recorded, and depends solely on the dynamic range and precision chosen. The
amount of work involved in recording a sample is constant, and directly computes
storage index locations such that no iteration or searching is ever involved in recording
data values.

Authors, Contributors, and License

HdrHistogram was authored by Gil Tene (@giltene) (original and Java version), with
ports by Mike Barker (@mikeb01) (C), and Matt Warren (@mattwarren) (C#), and
placed in the public domain, as explained at
http://creativecommons.org/publicdomain/zero/1.0/

Support or Contact

Don't call me, I won't call you. AZUL

SYSTEMS®

®@ 00 (< Bl hdrhistogram.github.io &

=
;)
o

Google Maps The Register TheServerSide Apple v Research v News v UIUC v eBay v Mechanical-Sympathy FoJC blogger +

togram Plotter

> files selected

Wict file(s) above.

Latency by Percentile Distribution

10,000 A: 99.97803%'ile = 8781.823 usec
— 7,500

3

j

(o]

[&]

:_g

T 5,000

oy

j

()]

T

~l 2,500

0% 90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile

BA BB [cC

Latency time units: (milliseconds %) Export Image

Percentile range:

99.99999%

*** Note: Input files are expected to be in the .hgrm format produced by HistogramlogProcessor, or the percentile output format for HdrHistogram. See example file format here

49 6/12/2015 A Crarmviricnht A=21il Syvictarme 929N = AZUL

SYSTEMS®

50

Shape of Constant latency

Latency (microseconds)

6/12/2015

40,000

30,000

20,000

10,000

Latency by Percentile Distribution

0%

90% 99% 99.9% 99.99% 99.999%
Percentile

B fixedlat40K.hgrm M fixedlat10K.hgrm

10K fixed line latency

99.9999%

AZUL

SYSTEMS®

Shape of Gaussian latency

Latency by Percentile Distribution

50,000

- 37,500
3
<
S
o
D
2

"g 25,000
>
<
)
®

~ 12,500

0

0% 90% 99% 99.9% 99.999% 99.9999% 99.99999%

B gaussianA.hgrm

10K fixed line latency With added
Gaussian noise (std dev. = 5K)

51 6/12/2015 a’ﬁsleejmlgo

Shape of Random latency

Latency by Percentile Distribution

50,000

- 37,500
3
<
)
o
D
2

""'E‘ 25,000
Ry
S
o)
®

~ 12,500

0

0% 90% : 99% 99.9% 99.99% 99.999% 99.9999% 99.99999%

Percentile

B gaussianA.hgrm [randomA .hgrm

10K fixed line latency with added
Gaussian (std dev. = 5K) vs. random (+5K)

52 6/12/2015 a’ﬁsleejmlgo

Shape of Stalling latency

Latency by Percentile Distribution

80,000
- 60,000
3
y
S
(€]
@
k2
:E: 40,000
a —/’/ —
<
S
©
a 20,000

0 3
0% 90% 99% 99.9% 99.99% 99.999% 99.9999%
Percentile
B gaussianA.hgrm [randomA.hgrm stallA.hgrm

10K fixed base, stall magnitude of 50K
stall likelihood = 0.00005 (interval = 100)

6/12/2015 SYSTEMS®

Shape of Queuing latency

Latency by Percentile Distribution

200,000
— 150,000
3
S
S
O
®
2
T 100,000
>
oy
2
©
~ 50,000

0 3
0% 90% 99% 99.9% 99.99% 99.999% % 99.9999%
Percentile .
B gaussianA.hgrm [randomA.hgrm stallA.ngrm [backlogA.hgrm
B gaussianA.hgrm [l randomA.hgrm stallA.hgrm

10K fixed base, occasional bursts of 500 msgs
handling time = 100, burst likelihood = 0.00005

54 6/12/2015 a’ﬁsleEJMI;o

95

Shape of Multi Modal latency

Latency (milliseconds)

Latency by Percentile Distribution

200,000
-

150,000 —
100,000
50,000
0

0% 90% 99% 99.9% 99.99% 99.999% 99.9999%
Percentile
B gaussianA.hgrm [randomA.hgrm stallA.ngrm [backlogA.hgrm [l 3mode.hgrm
M gaussianA.hgrm [l randomA.hgrm stallA.hgrm

10K modeO 70K model (likelihood 0.01)
180K mode?2 (likelihood 0.00001)

AZUL

6/12/2015 SYSTEMS®

56

And this what the real(?) world
sometimes looks like...

Latency by Percentile Distribution

80 =
’g 60 4// /7
L’B’ 20 //
) = — o]
0% 90% 99% 99.9% 99.99% 99.999% 99.9999%
Percentile
B haywire_100k_pipelined_uncorrected.hdr [l haywire_100k_pipelined_corrected.hdr h2o_100k_pipelined_uncorrected.hdr 12 p
. 1 Kelly Sommers
i @kellabyte
giltene Yeah. | have no idea how to do that yet. Ll m
is going on in the code here?! i.imgur.com/XMYHB2w.png
11/15/14, 1:29 AM
6/12/2015 ﬁszrlejmlg®

Real world “deductive reasoning”

Latency by Per e Distribution

200,000
-
150,000 —
3
o
S
&)
®
'-::._U‘?'
E 100,000
>
y
2 _/
~ 50,000
0
0% 90% 99% 99.9% 99.99% 99.999% 99.9999%
Percentile
B backlogA.hgrm [l 3mode.hgrm

B gaussianA.hgrm [randomA.hgrm stallA.hgrm

57 6/12/2015 ﬁsleejmlgo

http://www.|hiccup.org

JHiccup

959 6/12/2015 ﬁsleejmlgo

Discontinuity in Java execution

Hiccups by Time Interval

Max per Interval ===99% ===59.90% =09.59% =—Max

0 200 400 E00 200 1000 1200 1400 1600 1800
Elapsed Time (sec)

Hiccups by Percentile Distribution

Max=1665.024

Hiccup Dura
S
[

200

0% 90 99% 99.9% 99.99% 99.9599%

Percentile
60 6/12/2015 ﬁszrlnsjmlg®

Examples

66666666666 A gzrlejmlgo

Oracle HotSpot ParallelGC Oracle HotSpot G1

Hiccups by Time Interval Hiccups by Time Interval

Max per Interval =—99%% =99.90% =—=09.99% =—Max Max per Interval ===99% ===99.90% ===09.99% =—=Max

:
:

:
:

:
:

:

Hiccup Duration (msec)
(]
2]
[]

Hiccup Duration (msec)
Foud Lad
g B
]]

:
:

3
I
|
|
!
|
|
|
|
[
|
|
|
|
|

|
|
=]

0 500 1000 1500 2000 2500 3000 0 00 1000 1500 2000 2500 3000

Elapsed Time (sec) Elapsed Time (sec)
Hiccups by Percentile Distribution Hiccups by Percentile Distribution

:
:

:

Max=5439.488

:

Max=5144.576

:
:

:
:

Hiccup Duration (msec)
= L
8 8
] [
Hiccup Duration (msec)
id
&
L]

:

=
=2

0% S0% 59% 939.9% 93.59% 899.5999% 99.9995% 0% 50% 99% 99.5% 93.59% 99.999% 95.999%%

Percentile Percentile

1GB live set in 8GB heap, same app, same HotSpot, different GC

64 6/12/2015 ﬁsleEka@

65

Oracle HotSpot CMS Zing Pauseless GC

Hiccups by Time Interval Hiccups by Time Interval

Max per Interval ===99% =—=95.90% =—=599.99% =—Nax Max per Interval ===99% =—=99.90% =—599.99% =—Max

é
E -
P
L

= 12000 ' =
2 : g 20
E 10000 | E
= 3 =
o o 15
£ 8000 B
i+] i i+]
5 5
2 6000 a 10
=8 j=1N
2 4000 3

y = = g
T 2000 T

0 00 1000 1500 2000 2500 3000 3500 S00 1000 1500 2000 2500 3000 3500
Elapsed Time (sec) ' Elapsed Time (sec)

Hiccups by Percentile Distribution Hiccups by Percentile Distribution
. : . 25

Max=13156.352

E Max=20.384
Percentile Percentile
1GB live set in 8GB heap, same app, different JVM/GC
6/12/2015 ﬁszrlejmlg®

66

Oracle HotSpot CMS

Hiccups by Time Interval

Max per Interval ===98% =—=99.90% =—=589.99% =—Max
14000

o 12000

5e

m
[ary
=
=
L=

3000

a00o0

4000

Hiccup Duration (

2000

] 00 1000 1500 2000 2500 3000 3500
Elapsed Time (sec)

Hiccups by Percentile Distribution
14000

12000 Max=13156.352

[y
=
=
o

8000

a00o0

4000

Hiccup Duration (msec)

2000

0% 90% 908 99.9% 95.99% 959.999%

Percentile

14300

o 12000

mse
'—l
a
=]
o]

8000

6000

4000

Hiccup Duration (

2000

140300

12000

10300

8000

6000

4000

Hiccup Duration (msec)

2000

Zing Pauseless GC

Hiccups by Time Interval

Max per Interval ===99% =—=93.90% =—=599.99% =—Max
0 500 1000 1500 2000 2500 3000 3500
Elapsed Time (sec)
Hiccups by Percentile Distribution
0% Max=Zh.384 9%% 99.9% 99.99% 99.999% 99.95999%
Percentile

1GB live set in 8GB heap, same app, different JVM/GC- drawn to scale

6/12/2015

AZUL

SYSTEMS®

Oracle HotSpot (pure NewGen) Zing Pauseless GC

Hiccups by Time Interval Hiccups by Time Interval
Max per Interval =——99% ===09.90% =—=99.99% =Nax Max per Interval =—99% =—=099.90% =—=59.99% =—Max
25 1.8
T .
@ 20
E
g 15
F =
m
5
8 10]] | l ‘
ﬂ -
2 S LI*%] H l|
2 r g

]

a 100 200 300 400 500 e00 0 100 200 300 400 500 600

Elapsed Time (sec) Elapsed Time (sec)
Hiccups by Percentile Distribution Hiccups by Percentile Distribution
25 1.8
1.6
-'E 20 Max=22.656 -E 4 Max=1.568
E E
§15 S
& &
3 > 0.8
8 10 - 8
a 206
g g
T 5 T 0.4
0.2
0 - . . o ! . - . - .
0% 90% 99% 99.9% 99.59% 99.555% 0% 90% 99% 99.5% 99.99% 99.999%

Percentile Percentile

Low latency trading application

67 6/12/2015 SYSTEMS®

Oracle HotSpot (pure NewGen) Zing Pauseless GC

Hiccups by Time Interval Hiccups by Time Interval

! —Max per Interval =—99% =—=09.90% =—=99.99% =Nax —Max per Interval =——99% =—=00,90% =——059.99% =—Max

25
)
@ 20
E
S 15 [
£ =]
I
a 10
ﬂ p—
=
g |
T 2 ﬂ

0 - ' ' . ' - ' -

100 200 300 400 500 600 300 400 500 600
Elapsed Time (sec) Elapsed Time (sec)
Hiccups by Percentile Distribution Hiccups by Percentile Distribution
25

18 7

-
o e T T il

Max=22.656

Max=1.568

Hiccup Duration (msec)

Hiccup Duration

= ¢
i

0.2
0 0 I
0% S0% 99% 899.9% 99.99% 99.995% 0% 0% 99% 99.9% 899.99% 899.999%
Percentile Percentile

Low latency trading application

68 6/12/2015 ﬁszrlejm s®

Oracle HotSpot (pure NewGen) Zing Pauseless GC

Hiccups by Time Interval Hiccups by Time Interval
Max per Interval ===99% ===99,90% ===99.99% ===Max Max per Interval ==~99% ===99.90% ===99.99% =——Max

25 25
) [
@ 20 @ 20
E | E
S 1s r [L £ 15
: | N i :
o o
=]
8 10 l;il‘h’ ! ” r[. ’i i H 8 10
2 J P L, ST R 2

_—
0 - 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Elapsed Time (sec) Elapsed Time (sec)
Hiccups by Percentile Distribution Hiccups by Percentile Distribution

25 25
-E 20 Max=22.656 -E 20
E E
§1s g 15
g <
=1 =
a 10 8 10
(=18 (=18
o] g
o 5 o 5
* - Max=1.568

———
0% 90% 99% 99.9% 99.59% 99.555% 0% 90% 99% 99.9% 99.59% 99,595%
Percentile Percentile

AZUL
69 6/12/2015 SYSTlEJM se

Q&A

www.azul.com

Www.Jhiccup.com

www.hdrhistogram.com

@schuetzematt

00000000000 ﬁ ﬁzrlejmlgo

https://github.com/LatencyUtils/LatencyUtils

