VM

Decomposing the Monolith

QCon - New York- 2015

Agenda

VMTurbo
* What we do
* How we do it
* Who we are

Monolithic Architecture
Pain Points

Architectural Principles

Organizational Principles

Evolution Phase 1
¢ Team
¢ Architecture

Next Steps

What is VMTurbo Operations
Manager?

A Demand-Driven Control System for the Data Center

 Looks at the Resources in the datacenter and the
associated workload demands.

» Takes action to keep the workloads in their desired state.

VMTurbo: How it Works

Assure Application Performance WHILE Maximize Efficiency
1

Desired State

1000101
0001010

Assure Applic‘ation Performance WHILE Maximize Efficiency
1

Doesn’t assure DeSI.'fed Sta‘te The bubbles of the
Performance doing & viewing
Ve .
4

)

@

°
1000101
0001010

The ONLY way to
assure performance is
to get out of this loop

CPU1 UTILIZATION

CPU1 UTILIZATION

CPU2 UTILIZATION

M
o
-
N
| o
—
—
-~
-
N
-
—
—
o
=

CPU1 UTILIZATION

n-dimensional space.

CPU

n- dinensional space

- CPU

n-disendlonal spBce

CPU

RAM1 UTILIZATION

RAM2 UTILIZATION

n-dimensional space nYdigensional space’

CPU ‘RAM

NAMFIL UVILLLLZATLUN

a-dimensional space nYdigensional space’

CPU - RAM

M

o
R =
o
o
A
c
g
m.
-4
c

n-dimensional. space -- d1 smr\al AP |

- RAM

n-diménsional space

S

HYBRID
COMPUTE CLOUD

STORAGE

NETWORK WORKLOAD

A Marketplace of Buyers and Sellers

Service
Entity

— -

—>

A Marketplace of Buyers and Sellers

> W
<O
<=
o @
DD.

Desired States

QoS Guarantee

—— FET

@ Efficiently

utilizing the
underlying
infrastructure

A Marketplace of Buyers and Sellers

Storage

HHEEEEE

€ Storage /

Controller

Unified Demand-Driven Control Platform

Plan Control ‘ Deploy

Analy Q

Economic Sc

Abstraction LayJ
The Market

Hybrid
Cloud

Platform

VMTurbo Components...

Plan Control Deploy

Analytic Layer -
Economic Scheduling Engine

Abstraction Layer -
The Market

Application
PP Container

| #docker

Who We Are

50+ Engineers

Expected to double in 6 months

Founded in 2009

Who We Are

Geographically Distributed

The Monolith

In the beginning...

MonolithFirst Gojng girectly to a

Martin Fowler ~ mjcroservices
3 June 2015

. architecture is risky

Continue breaking out
services as your knowledge
of boundaries and service
management increases

A monolith allows you to
explore both the complexity

of a system and its As complexity rises start
component boundaries breaking out some

microservices

Ul Services (

Analytics /<

i)

JVM (Tomcat)

- y \ Abstraction
Database “ :

Mediation Components

Monolithic

o
B
O
=
=
N
=
5
T

Release Cycle

Major Release Every 6 Months

Interim Patches

0’2)

n.pn‘nn'fn'n'll'ni il

N

|
Wy T

i ‘
I
’ llll\th \Q w'

(1

Summary of Initial State

Monolithic Architecture
Monolithic Team Structure
Release Every Six Months
No Metrics Captured

Pain Points

Monolithic Architecture
Monolithic Team Structure
Release Every Six Months
No Metrics Captured

Pain Points

* Monolithic Architecture
* Scalability Issues
* Concurrency Issues
* Tangled Interfaces between Components

Pain Points

e Monolithic Team Structure
* Divided Focus limits Team Velocity
e Customer Issues vs. New features

Catalysts for Change

Growth in Customer Base — to over 1000

More Large Environments — up to 75K VMs under management
Geographical Spread of Team — US / Canada / Italy / Greece / Russia
More Frequent Deliveries — Semi-Monthly vs. Every 6 mos

Expanding Feature Base — Across the Datacenter

Architectural Principles

Design by Interface When designing a component, focus on
the behavior of the component. Users of components are aware of
interfaces only. No concrete classes are known to the user of the
components.

Architectural Principles

Separation of Concerns A component should only
implement the business function it is mandated to cover and not be
concerned with other issues. For example, an Analysis component
contains code to compute action items. There should be no code
related to mediation or databases. These concerns are handled
outside of the Analysis component.

Architectural Principles

Inversion of Control (IoC)

If component A depends on component B (e.g., ESE depends on a
Pricing Function), B is provided to A rather than A being coded with
the way to find B. This results in concise and configurable
components. IoC is a function of the Micro Container.

Architectural Principles

Code Instrumentation
Components will need to be instrumented in order to be managed
(Stopped, Started, Paused, Resumed, Inspected) at runtime.

Architectural Principles

Facades

VMTurbo cannot dictate its future technology choices but rather
endeavors to easily adapt to them. Everything in VMTurbo should
be replaceable by another implementation that conforms to the
prescribed set of interfaces.

Architectural Principles

Well-formed Components

Well-formed components are those that adhere to the principles listed
above. In addition, well-formed components are delivered with built-
in, non-regression functional and performance tests. In addition,

standard documentation is packaged with components and may be
browsed once deployed.

Organizational Principles

Small Teams
Decomposing the monolith affects teams as well. Small teams
operating in an agile fashion is essential.

Separation of Concerns

Organizational Principles for Microservices

Peer Review

Code Quality Measurement:

WTFs/Minute

wTF

wTF
¥

N

WTF is
this shit?

K

Good Code

http://commadot.com

7

.

|

Bad Code

© 2008 Focus Shift/OSNews — Thom Holwerda

Organizational Principles for Microservices

Metrics, Metrics and Morxre Metrics

Testing, testing and more Testing

~ SonarQube x

€& - C' [build.vmturbo.com/sonar/
Projects ¥ Measures Issues Rules

I

SR OPSMANAGER

TOOLS

Directory Tangle Index
Dependencies

Quality Profiles Quality Gates

Dependencies To Cut

Compare 16.1% Between Directories
S vl 1,054 &
ycles
mbe\ >11.402 Between Files
1,820 &
OPSMANAGER
Complexity 40000
2. 2 /function 20000
203 /class 0
1 2 4 6 & 1.0 12
] 60 [file © Functions () Files
Total: -l 55,945 A
OPSMANAGER
Technical Issues © Blocker 9
Debt 3,905 A © Citical 1387 2 NN
329d . ® Major 2366 7
© Minor 79 |
|

@ Info 64

(NIl Search
PROJECTS
QG NAME » VERSION LOC TECHNICAL DEBT LAST ANALYSIS
(=) OpsManager 5.3-SNAPSHOT 675,177 A 329d ' May 31 2015
1 results
PROJECTS

Size: Lines of code Color: Coverage

OpsManager

Evolution Phase 1

Decomposing the Monolith

The Journey Starts

Continuous Integration

A

Source Code
Control

7— Source Code
Control

Continous
Integration

Metrics

%Code Coverage

%Documentation of Public APIs

Performance Metrics

Find Bugs Issues

Mediation Microservices

The First VMTurbo Microservice

Architectural Principles

Separation of Concerns A component should only
implement the business function it is mandated to cover and not be
concerned with other issues. For example, an Analytics component
contains code to compute action items. There should be no code
related to mediation or databases. These concerns are handled
outside of the ESE component.

Separate Analysis and Mediation Models

Mediation Model == Projection of The Analysis Model

Architectural Principles

Design by Interface When designing a component, focus on
the behavior of the component. Users of components are aware of
interfaces only. No concrete classes are known to the user of the
components.

Mediation Behaviors and Interface to

Analysis
Initial Population VMTurbo Abstraction
Updating of Supply and Demand data.

Updating of Entity Data
Execute Control Actions Identified by

Analysis

Before Decomposition

Model Instantiation dozens

Update Supply and Even more
Demand Data

Update Entity Data Even more than that

StorageAmount storageCommodity = (StorageAmount) commoditySold(da,AbstractionPackage.eINSTANCE.getStorageAmount(),STORAGE_ACCESS_PREFIX+da.getName());
1 NetAppDADiscExt storageExt = (NetAppDADiscExt) storageCommodity.createExtension(DiscoveryExtensionsPackage.eINSTANCE.getNetAppDADiscExt());
setExtProps(storageExt, target,daExt.getDisplayName(),daExt.getLocalName(), STORAGE_PREFIX+da.getUuid(), logPrefix);

/ If Hybrid, Storage Amount of the HDDs alone considered

if(Caggr.isHybridEnabled() != null && aggr.isHybridEnabled()) && (aggr.isHybrid() !=null && aggr.isHybrid()) && aggregateSSDSizes.get(aggrName) != null)
storageCommodity.setCapacity(aggr.getSizeTotal().floatValue()/Mega - aggregateSSDSizes.get(aggrName));

else
storageCommodity.setCapacity(aggr.getSizeTotal(). floatValue()/Mega);

Create StorageProvisioned Commodity
1 StorageProvisioned stprovCommodity = (StorageProvisioned) commoditySold(da,
AbstractionPackage.eINSTANCE.getStorageProvisioned(), STORAGE_PROVISIONED_PREFIX+da.getName());
NetAppDADiscExt stproveExt = (NetAppDADiscExt) stprovCommodity.createExtension(DiscoveryExtensionsPackage.eINSTANCE.getNetAppDADiscExt());
setExtProps(stproveExt, target,dakExt.getDisplayName(),daExt.getLocalName(), STORAGE_PROVISIONED_PREFIX+da.getUuid(), logPrefix);
s stprovCommodity.setCapacity(Caggr.getSizeTotal(). floatValue(D/Mega * ((Double)StorageSettingsManagerImpl.vmtMANAGER.getSetting(da,
AnalysisPackage.eINSTANCE.getStorageSettingsManager_Capacity_DAProvisioned())).floatValue()/100);

Create StorageAc (IOPS) commodity
StorageAccess stAccess = (StorageAccess) commoditySold(da,AbstractionPackage.eINSTANCE.getStorageAccess(), STORAGE_PREFIX+da.getNameld);

) NetAppDADiscExt stExt = (NetAppDADiscExt) stAccess.createExtension(DiscoveryExtensionsPackage.eINSTANCE.getNetAppDADiscExt());

1 setExtProps(stExt, target,daExt.getDisplayName(),daExt.getLocalName(), STORAGE_PREFIX+da.getUuid(), logPrefix);
stAccess.setCapacity(iopsCapacity);

Repeated
patterns.

/ Create Storagelatency (LAT) commodity
Storagelatency stlLatency = (Storagelatency) commoditySold(da,AbstractionPackage.eINSTANCE.getStoragelLatency(), STORAGE_LATENCY_PREFIX+da.getName());]:)'ff' lt t
NetAppDADiscExt latExt = (NetAppDADiscExt) stlLatency.createExtension(DiscoveryExtensionsPackage.eINSTANCE.getNetAppDADiscExt()); 1I1cu o

setExtProps(latExt, target,dabExt.getDisplayName(),daExt.getlLocalName(), STORAGE_LATENCY_PREFIX+da.getUuid(), logPrefix);

comprehend

/ Create the bought commodi and associate with the underlying contr

1] if (sc != null) {

31 CPU cpuBought = (CPU) commodityBought(da,AbstractionPackage.eINSTANCE.getCPU(), CPU_PREFIX+da.getName(D+"_"+sc.getName(D);
NetAppDADiscExt cpuExt = (NetAppDADiscExt) cpuBought.createExtension(DiscoveryExtensionsPackage.eINSTANCE.getNetAppDADiscExt());
setExtProps(cpuExt,target,daExt.getDisplayName(),daExt.getLocalName(), CPU_PREFIX+sc.getUuid(), logPrefix);

Commodity cpuSold = sc.getCommoditiesMap().get(CommodityType. fetch(AbstractionPackage.eINSTANCE.getCPU(), null));

39¢ cpuSold.getConsumedBy().add(cpuBought);

String saKey = CommoditylImpl.dynCommKey(sc);
StorageAmount stAmountBought = (StorageAmount) da.buyDynamicCommodity(AbstractionPackage.eINSTANCE.getStorageAmount(), saKey, 1);
NetAppDADiscExt stAmountExt = (NetAppDADiscExt) stAmountBought.createExtension(DiscoveryExtensionsPackage.eINSTANCE.getNetAppDADiscExt());
L] setExtProps(stAmountExt, target,daExt.getDisplayName(),daExt.getLocalName(), STORAGE_PREFIX+da.getUuid(), logPrefix);
)1 stAmountBought.setThin(false);
/ Set Key for Storage Amount as Storage Controller if 7 mode
Commodity stAmountSold = sc.getCommoditiesMap().get(CommodityType. fetch(AbstractionPackage.eINSTANCE.getStorageAmount(), saKey));
stAmountSold.getConsumedBy().add(stAmountBought);

storageCommodity.setResizeable(true); storageCommodity.getChargedBy().add(stAmountBought);
stprovCommodity.setResizeable(true); stprovCommodity.getChargedBy().add(stAmountBought);

da.setHostedBy(sc);
}

handleNewSE(da, removedObjects);
dm.addNewObject(da);

da.powerStateChanged(EntityPowerState. POWERED_ON);
return da;

After Decomposition

Model Instantiation

Update Supply and
Demand Data

Update Entity Data

DiskArrayBuilder da = new DiskArrayBuilder(DA1_ID)
.displayName(DA1_NAME)

.1unId(1lunUUIDs)

.path(DA1_PATH_VAL)

.storageAcess(100F)
.storageAmount (106F)
.storageProvisioned(100F)
.storagelLatency(100f)
.storageExtent(1006f)

.storageController(SC_ID)
.storageAmountBought(null, 1eef, 1f)
.cpuBought(null, 10ef, 1f);
EntityDTO dae = da.configure();

Untangling the Interfaces

Database ﬁ/ IRa g sitory

X \

-

Mediaiion Comporiants
VvC O N>) JcCs

* The Approach

Clean up Interface
between Mediation
and Analysis
Separate Mediation
functionality from the
Monolith

Publish APIs

* Analysis > Mediation Service
DISCOVERY_START
EXECUTE_ACTION
TERMINATE, RESTART, PAUSE

* Mediation Service = Analysis
REGISTER COMPONENT
ADD_ ENTITY
UPDATE_ENTITY
DELETE_ENTITY
END_DISCOVERY
UNREGSITER

ainjonJiseljuj [enMip

discovery_st

Key Features
Maintains No State
Operations on a projection of the Analysis

Model
Conforms to a very simple interface
Available in the VMTurbo SDK

Examples available on github:

®

Ovmturbo/vmturbo—sdk-ex X

&« (& GitHub, Inc. [US] https://github.com/vmturbo/vmturbo-sdk-examples/tree/master

O This repository Pull requests Issues Gist

File successfully deleted.

vmturbo / vmturbo-sdk-examples ®Unwatch~ 11 JStar 1

Contains Examples for the VMTurbo Operations Manager Software Development Kit
<> Code
11 commits 1 branch 0 releases 2 contributors

c—— Issues

B8 B branch: master - | vmturbo-sdk-examples / + i

¥ Fork

Pull requests

remove .project file
Wiki
"' sisler authored just now latest commit 9ecb25e2e4 f

applicationProbe

fileProbe

2

The VMTurbo Component
Ecosystem — Next Steps

) Discovery Monitoring
Components and High Level Flow Domain specific mediation

Components

Validator:

Consumes mediation data.
Constructs and validates
Market Participants and
Commodities

ESE

Reposjtory Economic Scheduling Engine. Consumes
Market Participants and Commodities
Emits action items

Orchestrator

Consumes action items from the ESE,
Filters them based on constraints and
Provides them to Control.

Control
Executes actions on the virtual infrastructure

Communication is not necessarily point to point

