
Decomposing the Monolith

QCon - New York- 2015

Agenda
 •  VMTurbo

•  What we do
•  How we do it
•  Who we are

•  Monolithic Architecture

•  Pain Points

•  Architectural Principles

•  Organizational Principles

•  Evolution Phase 1
•  Team
•  Architecture

•  Next Steps

What is VMTurbo Operations
Manager?

•  A Demand-Driven Control System for the Data Center

•  Looks at the Resources in the datacenter and the
associated workload demands.

•  Takes action to keep the workloads in their desired state.

Desired State

Assure Application Performance WHILE Maximize Efficiency
VMTurbo: How it Works

Desired State

Assure Application Performance WHILE Maximize Efficiency

Doesn’t assure
Performance

The ONLY way to
assure performance is
to get out of this loop

The bubbles of the
doing & viewing

Commodity

A Marketplace of Buyers and Sellers

Service
Entity

Sell Buy

25

A Marketplace of Buyers and Sellers

26

QoS Guarantee D
E

L
A

Y
/

P
R

IC
E

ms

Desired States

0% 100% U T I L I Z A T I O N
Assuring
Application
Performance

Efficiently
utilizing the
underlying

infrastructure

A Marketplace of Buyers and Sellers

Buy

Provider
VDC

Org
VDC

Switch

Array

Physical
Machine

Zone

Region Network

27

Data
Center

Storage
Controller

Storage

vPOD

dPOD

Container

Unified Demand-Driven Control Platform

28

VMTurbo Components…

29

Who We Are
50+ Engineers

Expected to double in 6 months

Founded in 2009

Who We Are

Geographically Distributed

The Monolith

34

Analytics

Database

Mediation Components

UCSVC

Repository

Abstraction

JVM

UI Services
JVM (Tomcat)

Eclipse Modeling
Framework

Home Grown
Repository

MySQL

Team Structure

Monolithic

Release Cycle

Major Release Every 6 Months

Interim Patches

Metrics?

Summary of Initial State

•  Monolithic Architecture
•  Monolithic Team Structure
•  Release Every Six Months
•  No Metrics Captured

Pain Points

•  Monolithic Architecture
•  Monolithic Team Structure
•  Release Every Six Months
•  No Metrics Captured

Pain Points

•  Monolithic Architecture
•  Scalability Issues
•  Concurrency Issues
•  Tangled Interfaces between Components

Pain Points
•  Monolithic Team Structure

•  Divided Focus limits Team Velocity
•  Customer Issues vs. New features

Catalysts for Change

Growth in Customer Base – to over 1000

More Large Environments – up to 75K VMs under management

Geographical Spread of Team – US / Canada / Italy / Greece / Russia

More Frequent Deliveries – Semi-Monthly vs. Every 6 mos

Expanding Feature Base – Across the Datacenter

Architectural Principles

Design by Interface When designing a component, focus on
the behavior of the component. Users of components are aware of
interfaces only. No concrete classes are known to the user of the
components.

Architectural Principles

Separation of Concerns A component should only
implement the business function it is mandated to cover and not be
concerned with other issues. For example, an Analysis component
contains code to compute action items. There should be no code
related to mediation or databases. These concerns are handled
outside of the Analysis component.

Architectural Principles

Inversion of Control (IoC)
If component A depends on component B (e.g., ESE depends on a
Pricing Function), B is provided to A rather than A being coded with
the way to find B. This results in concise and configurable
components. IoC is a function of the Micro Container.

Architectural Principles

Code Instrumentation
Components will need to be instrumented in order to be managed
(Stopped, Started, Paused, Resumed, Inspected) at runtime.

Architectural Principles

Façades
VMTurbo cannot dictate its future technology choices but rather
endeavors to easily adapt to them. Everything in VMTurbo should
be replaceable by another implementation that conforms to the
prescribed set of interfaces.

Architectural Principles

Well-formed Components
Well-formed components are those that adhere to the principles listed
above. In addition, well-formed components are delivered with built-
in, non-regression functional and performance tests. In addition,
standard documentation is packaged with components and may be
browsed once deployed.

.

Organizational Principles
Small Teams
Decomposing the monolith affects teams as well. Small teams
operating in an agile fashion is essential.

Separation of Concerns

.

Peer Review

.

Organizational Principles for Microservices

© 2008 Focus Shift/OSNews – Thom Holwerda

Organizational Principles for Microservices
Metrics, Metrics and More Metrics

Testing, testing and more Testing

Metrics, Metrics and More Metrics

Testing, testing and more Testing

Decomposing the Monolith
The Journey Starts

Evolution Phase 1

Continuous Integration

Code
Nightly
Build

Source Code
Control

Pull

Continous
Integration

Test

Source Code
Control

Poll

Deploy

Code

Metrics

•  %Code Coverage

•  %Documentation of Public APIs

•  Performance Metrics

•  Find Bugs Issues

Mediation Microservices
The First VMTurbo Microservice

Architectural Principles
Separation of Concerns A component should only
implement the business function it is mandated to cover and not be
concerned with other issues. For example, an Analytics component
contains code to compute action items. There should be no code
related to mediation or databases. These concerns are handled
outside of the ESE component.

Separate Analysis and Mediation Models

Before

Mediation Model == Analysis Model

After

Mediation Model == Projection of The Analysis Model

Architectural Principles
Design by Interface When designing a component, focus on
the behavior of the component. Users of components are aware of
interfaces only. No concrete classes are known to the user of the
components.

Mediation Behaviors and Interface to
Analysis

•  Initial Population VMTurbo Abstraction
•  Updating of Supply and Demand data.
•  Updating of Entity Data
•  Execute Control Actions Identified by

Analysis

Functions Number of Ways

Model Instantiation dozens

Update Supply and
Demand Data

Even more

Update Entity Data Even more than that

Before Decomposition

Repeated
patterns.

Difficult to
comprehend

Functions Number of Ways

Model Instantiation 1

Update Supply and
Demand Data

1

Update Entity Data 1

After Decomposition

Untangling the Interfaces

Analytics

Database

Mediation Components

UCSVC

Repository

Abstraction

JVM

UI Services

•  The Approach
•  Clean up Interface

between Mediation
and Analysis

•  Separate Mediation
functionality from the
Monolith

•  Publish APIs

•  Mediation Service à Analysis
 REGISTER COMPONENT

ADD_ENTITY
UPDATE_ENTITY
DELETE_ENTITY
END_DISCOVERY
UNREGSITER

•  Analysis à Mediation Service
DISCOVERY_START
EXECUTE_ACTION
TERMINATE, RESTART, PAUSE

VMT Appliance –

VMT Server (tomcat)

Analysis Akka
Frontend
Actor

Ext Host –

Container

Mediation Component
Akka Actor (supervisor)

VC
Akka
actor

UCS
Akka
actor

discovery_start

discovery_end

Vi
rtu

al
 In

fra
st

ru
ct

ur
e

Ext Host –

Container

Mediation Component
Akka Actor (supervisor)

VC
Akka
actor

UCS
Akka
actor

Key Features
•  Maintains No State
•  Operations on a projection of the Analysis
•  Model
•  Conforms to a very simple interface
•  Available in the VMTurbo SDK

Examples available on github:

The VMTurbo Component
Ecosystem – Next Steps

Components and High Level Flow

ESE

Repository

Discovery/
Monitoring

Orchestrator

UI

Validator Control

Discovery Monitoring
Domain specific mediation
Components

Validator:
Consumes mediation data.
Constructs and validates
Market Participants and
 Commodities

ESE
Economic Scheduling Engine. Consumes
Market Participants and Commodities
Emits action items

Orchestrator
Consumes action items from the ESE,
Filters them based on constraints and
Provides them to Control.

Control
Executes actions on the virtual infrastructure

 Communication is not necessarily point to point

