N

. Understanding Jav

N

Maurice Naftalin

e e — e —— - - _ _

Developer, designer, architect, teacher, learner, writer

N

@mauricenaftalin

Repeat offender:

Java 5

\[l‘(‘:/ Lp the fara /N'-’H’-’,’Wh'l.’l FProcess

Java
Generics

and Collections

O'REILLY" e PO Sl

Copry® i od Matennad

Mastering Lambdas:
Java Programming in a
Multicore World

Best Practices for Using Lambda Expressions
and Streams

Maurice Naftalin

Foreword by Brian Goour
Coprr pived Mater il

Java

Oracle
Press

The Lambda FAQ

HOME ABOUT THE LAMBDA FAQ LAMBDA RESOURCES ASK THE FAQ

Maurice Naﬂalin's Lambda FAQ Posts Comments

Your questions answered: all about Lambdas and friends

‘y\ : R 1 -
% 4 e < § ’\ » \\ 3
&

ST Yo W08

_— N .

e ‘ . : ! -

N -

| * About the Lambda FAQ

Fund.amenta|s e Lambdas are now becoming a familiar part of the Java scenery. Java 8 shipped on March 18th this year, bringing with it the long-
What is a lambda expression? awaited feature of lambda expressions (aka closures). Together with the associated language and library features—streams and
Why are lambda expressions virtual extension methods—they are having a greater impact on how we program in Java than any other change in the history of the
being added to Java? platform.

What is a functional interface?
What is the type of a lambda I initially started to learn about the new features so that Phil Wadler and I could consider a second edition of our book Java
expression? Generics and Collections. But as I learned more about the subtleties of the changes, it became clear that an entire new book

Are lambda expressions objects? (Mastering Lambdas) was needed. Writing that has used up my spare cycles for nearly a year, but I'm happy now to turn my
Where can lambda expressions attention back to this FAQ. And though of course I'm urging you to buy the book, it's not the end of wisdom on the subject: as I learn

be used? more and we get greater experience in using the new features, new understanding can be reflected here.

IWhabtdare the Sc.°pi"79 rules for The new features weren't all easy to understand at first, so this FAQ started with the intention of helping you over some of the
00N Oressons: obstacles that tripped me up. But then more advanced questions appeared, so I now hope that you will find it useful whether you are
Can lambda expressions be L;S‘?d already familiar with lambda expressions or encountering them for the first time. All comments and contributions are welcome. I'm

to define recursive functions? very pleased to acknowledge the continuing input from the Oracle Java Language and Tools team, especially Stuart Marks and Brian

www.lambdafag.org

ON think

@mauricenaftalin

http://www.lambdafaq.org

— Background

— Java 8 Streams

— Parallelism

— Microbenchmarking
— Case study

— Conclusions

Streams —Why?

® Bring functional style to Java
® Exploit hardware parallelism —“explicit but unobtrusive”

® |ntention: replace loops for aggregate operations

instead of writing this:

List<Person> people = ..
Set<City> shortCities = new HashSet<>() ;

for (Person p : people) {
City ¢ = p.getCity();
i1f (c.getName () .length() < 4) {
shortCities.add(c) ;
}

® |ntention: replace loops for aggregate operations

we're going to write this:

List<Person> people = ..

Set<City> shortCities = people.stream()
.map (Person: :getCity)
.filter(c -> c.getName () .length() < 4)
.collect (toSet()) ;

® |ntention: replace loops for aggregate operations

® more concise, more readable, composable operations, parallelizable

we’re going to write this:

List<Person> people = ..

Set<City> shortCities = people.parallelStream/()
.map (Person: :getCity)
.filter(c -> c.getName () .length() < 4)
.collect (toSet()) ;

Visualizing Stream Operations

Spliterator

X3

X2

X |

x0

)

Intermediate Op(s)

y0

—— = — —————— -

(Mutable)
Reduction

@mauricenaftalin

Practical Benefits of Streams?

Functional style will affect (nearly) all collection processing
Automatic parallelism is useful, in certain situations

= but everyone cares about performance!

The Free Lunch Is Over

http://www.gotw.ca/publications/concurrency-ddj.htm

10,000,000

1,000,000

100,000

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

Dual-Core Itanium 2 @ /
& 2}

10,000

1,000

100

10

® Transistors (000)

0

© Oock Speed (M H2)
o oo APower (W)
© Perf fOleck LP)

1970

1975 1980 1985 1990 1995 2000 2005

2010

http://www.gotw.ca/publications/concurrency-ddj.htm

-COre

Intel Xeon E5 2600 10

Visualizing Stream Operations

—— — ——— e ————————— _— —— ——————— _—

Intermediate Op(s)

Spliterator y0 (Mutable)
Reduction

x0

x|
X2

X3

@mauricenaftalin

What to Measure!

How do code changes affect system performance!

Controlled experiment, production conditions
- difficult!

So: controlled experiment, lab conditions
= beware the substitution effect!

Microbenchmarking

Really hard to get meaningful results from a dynamic runtime:
— timing methods are flawed
— System.currentTimeMillis() and System.nanoTime()
— compilation can occur at any time
— garbage collection interferes
— runtime optimizes code after profiling it for some time
— then may deoptimize it
— optimizations include dead code elimination

Microbenchmarking

Don’t try to eliminate these effects yourself!
Use a benchmarking library

— Caliper

— JMH (Java Benchmarking Harness)

Ensure your results are statistically meaningful

Get your benchmarks peer-reviewed

Case Study grep -b

“The offset in bytes of a matched pattern

grep -b: ;g displayed in front of the matched line.’

The Moving Finger writes; and, having writ,
Moves on: nor all thy Piety nor Wit
Shall bring it back to cancel half a Line
Nor all thy Tears wash out a Word of it.

rubaib|.txt

$ grep —-b 'W.xt' rubai51l.txt
44:Moves on: nor all thy Piety nor Wit
122:Nor all thy Tears wash out a Word of 1it.

Why Shouldn’t We Optimize Code!?

Because we don’t have a problem

Why Shouldn’t We Optimize Code!?

Because we don’t have a problem
- No performance target!

Why Shouldn’t We Optimize Code!?

Else there is a problem, but not in our process

Why Shouldn’t We Optimize Code!?

Else there is a problem, but not in our process
= The OS is struggling!

Why Shouldn’t We Optimize Code!?

Else there’s a problem in our process, but not in the code

Why Shouldn’t Ve Optimize Code!?

Else there’s a problem in our process, but not in the code
= GC is using all the cycles!

Why Shouldn’t We Optimize Code!?

Else there’s a problem in the code... somewhere

= now we can consider optimising!

The ... | 44 oves ... 36| 0 Shall ... | 42 or ... 4| 0
The ... | 44 oves ... 36| 44] [Shall ... | 42 or ... 4] 4?
The ... | 44 36 44 Shall ... | 42 80 . 41 |22

~____grep -b:Collector accumulator

Supplier “The moving ... writ,” “Moves on: ... Wit”

) /
[] accumulator
N\ K

[The moving ... writ,| 44 0

accumulator
\ »

[The moving ... writ,| 44 0 Moves on:... Wit | 36 | 44]

’

~_____grep -b:Collector solution

The ...| 44 | O Moves ... Nor ..| 4] 4?)

The ... | 44 0 Moves ...| 36 44 Shall ... | 42 80 Nor ..| 4] |22

What'’s wrong!?

* Possibly very little
- overall performance comparable to Unix grep -b

e Can we improve it by going parallel?

* The problem is a prefix sum — every element contains the
sum of the preceding ones.

- Combiner is O(n)

* The source is streaming |O (BufferedReader.lines())
e Amdahl’s Law strikes:

a0
a0
. Parallel
L - ey
/U Portion (P)
2
o 60 — 'y Ty
-
v 50 — 090
o 40 959
- I
U
20
10
0

Number of Processors(N)

A Parallel Solution for grep -b

Need to get rid of streaming 1O — inherently serial
Parallel streams need splittable sources

Stream Sources

Implemented by a Spliterator

MappedByteBuffer mid
V—»
The moving Finger ... writ | \n |Moves ...Wit| \n |Shall ... Line | \n |Nor all thy ... it | \n

spliterator coverage

new spliterator coverage

[\

Parallelizing -b

Splitting action of LineSpliterator is O(log n)
Collector no longer needs to compute index
Result (relatively independent of data size):

- sequential stream ~2x as fast as iterative solution

- parallel stream >2.5x as fast as sequential stream
- on 4 hardware threads

When to go Parallel

The workload of the intermediate operations must be great
enough to outweigh the overheads (~100us):

— initializing the fork/join framework
— splitting
— concurrent collection

Often quoted as N x Q

/N

size of data set processing cost per element

Intermediate Operations

Parallel-unfriendly intermediate operations:

stateful ones
— need to store some or all of the stream data in memory
— sorted ()

those requiring ordering
—1imit ()

Collectors Cost Extra!

Depends on the performance of accumulator and
combiner functions

® toList(),toSet(),toCollection() — performance
normally dominated by accumulator

® but allow for the overhead of managing multithread access to non-
threadsafe containers for the combine operation

® toMap(),toConcurrentMap() — map merging is slow.
Resizing maps, especially concurrent maps, is very expensive.
Whenever possible, presize all data structures, maps in
particular.

Parallel Streams in the Real World

Threads for executing parallel streams are (all but one) drawn
from the common Fork/Join pool

* Intermediate operations that block (for example on |/O) will
prevent pool threads from servicing other requests

* Fork/Join pool assumes by default that it can use all cores
— Maybe other thread pools (or other processes) are running?

Conclusions

Performance mostly doesn’t matter

But if you must...
* sequential streams normally beat iterative solutions

* parallel streams can utilize all cores, providing

- the data is efficiently splittable

- the intermediate operations are sufficiently expensive and are
CPU-bound

- there isn’t contention for the processors

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

http://shipilev.net/talks/devoxx-Nov20 | 3-benchmarking.pdf
http://openjdk.java.net/projects/code-tools/imh/

Mastering Lambdas: ,
Java Programming ina .
Multicore World

Best Practices for Using Lambda Expressions
and Streams

@mauricenaftalin

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html
http://shipilev.net/talks/devoxx-Nov2013-benchmarking.pdf
http://openjdk.java.net/projects/code-tools/jmh/

