lners

ting Conta
th Consul and Terraform

=

(O
S
)
U
Q
gt
O
WL
O

: et _’;
5..:..3.:..,;

éﬁ. _,_,_./f.....

Mitchell Hashimoto
@mitchellh

ORCHESTRATION?

Wy s It neeaed?’ VWnat Is 1t?

ORCHESTRATION

Do some set of actions, to a set of things,
In a set order.

o Ultimate goal: safely deliver applications at scale

PROBLEMS CONTAINERS SOLVE

Packaging

v
s

PROBLEMS CONTAINERS SOLVE

Docker Image Packaging

Docker Registry Image Storage

Docker Daemon

A LOT OF OITHER PIECES

e |nfrastructure lifecycle and provisioning
 Monitoring

e Service discovery

e Service configuration

e Security/ldentity

 Deployment and application lifecycle

INFRASTRUCTURE

DC

INFRASTRUCTURE

e Container hosts
e Storage
e Network

e External services

INFRASTRUCTURE

 Creation, update, destroy

 Creation is easy

 Update is hard

o Update with minimal downtime is hardest

 Has its own lifecycle events: canary infrastructure

changes, rolling, etc.

MONITORING

-

MONITORING

* Level of monitoring: node, container, service
 Propagation of information
o Utility of the information in other

orchestration actions

SERVICE DISCOVERY AND CONFIG

« Where is service foo?
« Runtime configuration of a service
(especially in an immutable world)

o All of the above at the speed of containers

SECURITY

e |dentity for service to service communication

e Storage and retrieval of secrets

APPLICATION LIFECYCLE

e Canary, Rolling, Blue/Green
 Create before destroy
e Triggering a deploy (communication)

 Monitoring a deploy

LIVING WITH LEGACY

 Non-container to container isn’'t atomic
 Orchestration needs to include non-containerized systems
 Time period for this is probably years

« What about a post-container world?

AN OLD PROBLEM

t all should sounda familiar

AN OLD PROBLEM

e “Orchestration problems” not caused by containers
 Higher density/speed reveals and exacerbates problems
 New aspects: public cloud, growing external

service footprint
 These orchestration problems existed yesterday,

exist today, and will exist tomorrow, in slightly

different forms

SOLUTIONS TO LAST

Infrastructure lifecycle, service discovery,
monitoring, and orchestration at scale
for all infrastructures.

Build, combine, and launch
iINnfrastructure safely and efficiently.

terraform.io

What If | asked you to...

e create a completely isolated second environment to run an application
(staging, QA, dev, etc.)?

« deploy or update a complex application?
« document how our infrastructure is architected?

e delegate some ops to smaller teams? (Core IT vs. App IT)

What If | asked you to...

e create a completely isolated second environment to run an application
(staging, QA, dev, etc.)? One command.

» deploy a complex new application? Code it, diff it, pull request.
« update an existing complex application? Code it, diff it, pull request.
« document how our infrastructure is architected? Read the code.

e delegate some ops to smaller teams? (Core IT vs. App IT) Modules,
code reviews.

Terraform

e Create infrastructure with code: servers, load balancers, databases, email
providers, etc.

« One command to create, update infrastructure.
e Preview changes to infrastructure, save diffs.

e Use code + diffs to treat infrastructure change just like code change:
make a pull request, show the differences, review it, and accept.

e Break infrastructure into modules to encourage/allow teamwork without
risking stability.

Infrastructure as Code

DigitalOcean Droplet with DNS in DNSimple

resource "digitalocean droplet" "web" ({

name = "tf-web"
size = "512mb"
image = '"centos-5-8-x32"
region = "sfol"

}

resource "dnsimple record" "hello" ({

domain = "example.com"
name = "test"
value = "${digitalocean droplet.web.ipv4 address}"

type — "A"

Infrastructure as Code

DigitalOcean Droplet with DNS in DNSimple

resource ''digitalocean droplet" "web" ({

name = "tf-web"
size = "512mb"
image = '"centos-5-8-x32"
region = "sfol"

}

resource "dnsimple record" "hello" ({

domain = "example.com"
name = "test"
value = "${digitalocean droplet.web.ipv4 address}"

type — "A"

Infrastructure as Code

DigitalOcean Droplet with DNS in DNSimple

resource "digitalocean droplet" "web" ({

name = "tf-web"
size = "512mb"
image = '"centos-5-8-x32"
region = "sfol"

}

resource "dnsimple record" "hello" ({

domain = "example.com"
name = "test"
value = "${digitalocean droplet.web.ipv4 address}"

type — "A"

Infrastructure as Code

DigitalOcean Droplet with DNS in DNSimple

resource "digitalocean droplet" "web" ({

name = "tf-web"
size = "512mb"
image = '"centos-5-8-x32"
region = "sfol"

}

resource "dnsimple record" "hello" ({

domain = "example.com"
name = "test"
value = "${digitalocean droplet.web.ipv4 address}"

type — "A"

Infrastructure as Code

Human friendly config, JSON compatible
Text format makes it version-able, VCS-friendly
Declarative

Infrastructure as code on a level not before possible

Zero to Done in One Command

Terraform Apply

S terraform apply
digitalocean droplet.web: Creating.

dnsimple record.hello: Creating..

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

Zero to Done in One Command

e |dempotent
 Highly parallelized

 Will only do what the plan says

Safely Change/lterate

Terraform Plan

+ digitalocean droplet.web

backups: ""o=> "<computed>"
image: "" => "centos-5-8-x32"
ipv4 address: ""o=> "<computed>"
ipv4d address private: "" => "<computed>"
name: "M => "tf-web"

private networking: ""o=> "<computed>"
region: "no=> "sfol"

size: ""o=> "512mb"

status: ""o=> "<computed>"

+ dnsimple record.

domain:
domain id:
hostname:
name :
priority:
ttl:

type:
value:

mwin

mwin

mwin

mwin

hello

=> "example.com"

=> "<computed>"

=> "<computed>"

=> "test"

=> "<computed>"

=> "<computed>"

=> "A"

=> "${digitalocean droplet.web.ipv4 address}"

Safely Change/lterate

Terraform Plan

+ digitalocean droplet.web

backups: ""o=> "<computed>"
image: "" => "centos-5-8-x32"
ipv4 address: ""o=> "<computed>"
ipv4d address private: "" => "<computed>"
name: "M => "tf-web"

private networking: ""o=> "<computed>"
region: "no=> "sfol"

size: ""o=> "512mb"

status: ""o=> "<computed>"

+ dnsimple record.

domain:
domain id:
hostname:
name :
priority:
ttl:

type:
value:

mwin

mwin

mwin

mwin

hello

=> "example.com"

=> "<computed>"

=> "<computed>"

=> "test"

=> "<computed>"

=> "<computed>"

=> "A"

=> "${digitalocean droplet.web.ipv4 address}"

Safely Change/lterate

Terraform Plan

+ digitalocean droplet.web

backups: ""o=> "<computed>"
image: "" => "centos-5-8-x32"
ipv4 address: ""o=> "<computed>"
ipv4d address private: "" => "<computed>"
name: "M => "tf-web"

private networking: ""o=> "<computed>"
region: "no=> "sfol"

size: ""o=> "512mb"

status: ""o=> "<computed>"

+ dnsimple record.

domain:
domain id:
hostname:
name :
priority:
ttl:

type:
value:

mwin

mwin

mwin

mwin

LA A

hello

=> "example.com"

=> "<computed>"

=> "<computed>"

=> "test"”

=> "<computed>"

=> "<computed>"

=> HAH

=> "${digitalocean droplet.web.ipv4 address}"

Safely Change/lterate

Plan shows you what will happen
Save plans to guarantee what will happen
Plans show reasons for certain actions (such as re-create)

Prior to Terraform: Operators had to “divine” change ordering,
parallelization, rollout effect.

L ots more features...

 Modules for knowledge sharing, reusable components
 Remote state for resource sharing

e Targeted applies to limit effect of any change

e Lifecycle management

e Custom plugins are simple

Workflow

* Make code changes

o terraform plan

* Pull request with code changes + plan to make changes
* Review and merge

o terraform apply pr1234.tfplan

Terraform with Containers

Terraform with Docker

Configure the Docker provider
provider '"docker" {

host = "tcp://127.0.0.1:1234/"
}

Create a container

resource '"docker container" "foo" ({
image = "${docker image.ubuntu.latest}"
name = "foo"

}

resource "docker image" "ubuntu" ({
name = '"ubuntu:latest"

}

Terraform with Containers

Terraform with Docker

Configure the Docker provider

provider '"docker" ({
host = "tcp://127.0.0.1:1234/"

}

Create a container

resource '"docker container" "foo" ({
image = "${docker image.ubuntu.latest}"
name = "foo"

}

resource "docker image" "ubuntu" ({
name = '"ubuntu:latest"

}

Terraform with Containers

Terraform with Docker

Configure the Docker provider
provider '"docker" {

host = "tcp://127.0.0.1:1234/"
}

Create a container

resource '"docker container" "foo" ({
image = "${docker image.ubuntu.latest}"
name — fOO"

}

resource "docker image" "ubuntu" ({
name = "ubuntu:latest"

}

Terraform with Containers

Terraform with Docker

Configure the Docker provider
provider '"docker" {

host = “tcp://127.0.0.1:1234/"
alias = “foo”

}

Create a container

resource "docker container" "foo" {
image = "${docker image.ubuntu.latest}"
name = “foo”

provider = “docker.foo”

Terraform with Containers

Terraform with Docker

Configure the Docker provider
provider '"docker" {

host = “tcp://127.0.0.1:1234/"
alias = “foo”

}

Create a container

resource "docker container" "foo" {
image = "${docker image.ubuntu.latest}"
name = “foo”

provider = “docker. foo”

Terraform with Containers

Terraform with Docker

Create a container

resource "docker container" "foo" {
image = "${docker image.ubuntu.latest}"
name = “foo”
host = “tcp://127.0.0.1:1234/"

tcp://127.0.0.1:1234/

Terraform with Containers

Terraform with Docker

Create a container

resource "docker container" "foo" {
image = "${docker image.ubuntu.latest}"
name = “foo”
host = “tcp://127.0.0.1:1234/"

tcp://127.0.0.1:1234/

Terraform with Containers

 Manage both the underlying infrastructure and application-level
containers

 Inherit lifecycle management features of Terraform

 Single host assign + schedulers

consul.io

Service discovery, configuration, anc
orchestration made easy. Distributed,
nighly available, and datacenter-aware.

Questions that Consul Answers

Where is the service foo? (ex. Where is the database?)
What is the health status of service foo?

What is the health status of the machine/node foo?
What is the list of all currently running machines?
What is the configuration of service foo?

Is anyone else currently performing operation foo?

Service Discovery

Where is service foo?

Service Discovery

Service Discovery via DNS or HTTP

S dig web-frontend.service.consul. +short
10.0.3.89
10.0.1.46

S curl http://localhost:8500/vl1/catalog/service/web-frontend

[{
“Node” : “‘node-e818fl”,

“Address”: “10.0.3.89",
“ServicelID”: “web-frontend”,

}]

Service Discovery

« DNS is legacy-friendly. No application changes required.
e HTTP returns rich metadata.

e Discover both internal and external services
(such as service providers)

Fallure Detection

|s service foo healthy/available?

Faillure Detection

G} SERVICES | NODES
consul 12 passing

sfol-consul-1 sfol-consul-2 sfol-consul-3

redis 15 passing
sfol-worker-1 sfol-worker-2 sfo1-worker-3

web 1 failing

sfol-worker-1 sfol-worker-2 sfo1-worker-3

Faillure Detection

« DNS won't return non-healthy services or nodes.

e HTTP has endpoints to list health state of catalog.

Key/Value Storage

What is the config of service foo?

Key/Value Storage

Setting and Getting a Key

S curl -X PUT -d ‘bar’ http://localhost:8500/v1/kv/foo
true

S curl http://localhost:8500/vl/kv/foo?raw
bar

Key/Value Storage

Highly available storage of configuration.
Turn knobs without big configuration management process.
Watch keys (long poll) for changes

ACLs on key/value to protect sensitive information

Multi-Datacenter

Multi-Datacenter

Service Discovery

S dig web-frontend.singapore.service.consul. +short

10.3.3.33
10.3.1.18

S dig web-frontend.germany.service.consul. +short
10.7.3.41
10.7.1.76

Multi-Datacenter

Setting and Getting a Key

S curl http://localhost:8500/vl1/kv/foo?raw&dc=asia
true

S curl http://localhost:8500/vl1l/kv/foo?raw&dc=eu
false

Multi-Datacenter

e Local by default
 Can query other datacenters however you may need to

e Can view all datacenters within one UI

Orchestration

Events, Exec, Locks, Watches

Events, Exec, Watches

Dispatching Custom Events

S consul event deploy 6DF7FE

S consul watch -type event -name deploy /usr/bin/deploy.sh

S consul exec -service web /usr/bin/deploy.sh

Events, Exec, Watches

 Powerful orchestration tools
 Pros/cons to each approach, use the right tool for the job

o All approaches proven to scale to thousands of agents

Locks

Dispatching Custom Events

S consul lock ./deploy.sh

S consul lock -n=5 ./deploy.sh

Locks

e Distributed lock
e Can have up to n acquisitions (semaphore)

e Primitive to make redundant but serial services

Operational Bullet Points

Leader election via Raft

Gossip protocol for aliveness

Three consistency models: default, consistent, and stale
Encryption, ACLs available

Real world usage to thousands of agents per datacenter

Consul with Containers

Run in or outside the container
Runtime configuration vs. buildtime configuration

Discover non-container services, plus transparent change if/when
they become containers

Speed and scalability of Consul very easily ready for “container scale”
as well as future scale

Thanks!

