
UBER RUSH
AND REBUILDING UBER’S DISPATCHING PLATFORM

motivation
CHAPTER 1 OF 8

MOTIVATION TOWARDS MICROSERVICES
STUNTS AND EXPERIMENTS

UBER RUSH, DELIVERY SERVICE
MOTIVATION TOWARDS MICROSERVICES

UBER RUSH REQUIREMENTS
MOTIVATION TOWARDS MICROSERVICES

BULK DELIVERIES

MULTI-DISPATCH

SOPHISTICATED MATCHING

CAPACITY MANAGEMENT

MULTI-PICKUP

UBER EATS REQUIREMENTS
MOTIVATION TOWARDS MICROSERVICES

TEMPERATURE REGULATION

INVENTORY MANAGEMENT

RE-SUPPLY STATIONS

CHECKOUT FLOW

NO PICKUP LOCATION

evolution
CHAPTER 2 OF 8

MONOSERVICE TO MICROSERVICES
MONOLITHIC ARCHITECTURE

DISPATCH
MONOSERVICE

CONFIG USER
CACHE

ETA SURGE GEO-
CODE

POST-
PROCESSOR
MONOSERVICE

CARS

1ST GENERATION MICROSERVICES
MONOSERVICE TO MICROSERVICES

LOGISTICS
SERVICES

FOUNDATIONAL
SERVICES

PLATFORM
SERVICES DEPENDENCIES

ONEDIRECTION FLIPR

ARBITER

GOLDETA

GEOCOD

CEREBRO

SUPPLY

DEMAND

GEOSPATIAL RAMEN

SYNC

INV. MGMT

LOCKET

OPTICDISPATCH
MONOSERVICE

MONOSERVICE TO MICROSERVICES

LOGISTICS
SERVICES

FOUNDATIONAL
SERVICES

PLATFORM
SERVICES DEPENDENCIES

ONEDIRECTION FLIPR

ARBITER

GOLDETA

GEOCOD

CEREBRO

SUPPLY

DEMAND

GEOSPATIAL

DISCO

RAMEN

SYNC

INV. MGMT

LOCKET

SCAVENGER

OPTIC

RTTR

LUMBERGHUDESTROY

GEOFENCE

DISPATCH

2ND GENERATION MICROSERVICES

A MICROSERVICE GATEWAY
MONOSERVICE TO MICROSERVICES

LOGISTICS
SERVICES

FOUNDATIONAL
SERVICES

PLATFORM
SERVICES DEPENDENCIES

ONEDIRECTION FLIPR

ARBITER

GOLDETA

GEOCOD

CEREBRO

SUPPLY

DEMAND

GEOSPATIAL

DISCO

RAMEN

SYNC

INV. MGMT

LOCKET

SCAVENGER

OPTIC

RTTR

LUMBERGHUDESTROY

GEOFENCE

DISPATCH
GATEWAY

MOTIVATION TOWARDS MICROSERVICES
THE TRADE-OFFS

MONOSERVICE vs.

MICROSERVICE
TEST SUITE IS SLOW

FAILURE IS CATASTROPHIC

CODE IS BRITTLE

DEPLOYS ARE SLOW

UPGRADES ARE PAINFUL

topologies
CHAPTER 3 OF 8

MICROSERVICE LAYOUT
INDEPENDENT, INDIVIDUALLY ADDRESSABLE SERVERS

DEMAND SERVICE

HOST

SERVICE

WORKERS

MICROSERVICE LOAD AVERAGE

ARRANGEMENT OF MICROSERVICES
MULTI-TENANT OR DEDICATED HOSTS?

DEMAND SUPPLY

DISCO

DEDICATED DEMAND
HOST

MULTI-TENANT HOSTS

OR

OPTIC

communications
and fault tolerance
CHAPTER 4 OF 8

MANAGING MICROSERVICE DEPENDENCIES
AUTO-GENERATED CLIENTS

JSON OVER
HTTP

THRIFT
OVER HTTP

DEMAND
MICROSERVICE

DISCO
MICROSERVICE

LUMBERGH

LOAD-BALANCING MICROSERVICES
WITH CLIENT-SIDE LOAD-BALANCING

A B

B

B

A TALKS DIRECTLY TO B

HEALTH CHECKING

PERSISTENT CONNECTIONS

CONNECTION POOLING

RETRIES

HOT HOST FILE RELOADING

COOPERATIVE MICROSERVICE INSTANCES
FROM INDEPENDENT WORKERS TO COOPERATIVE

INDEPENDENT
DEMAND HOSTS
AND WORKERS

COOPERATIVE
DEMAND WORKERS

ACROSS MANY
HOSTS

GOSSIP WITH ONE
ANOTHER AND MAINTAIN A

HASH RING OF EACH
WORKER

232

COOPERATIVE MICROSERVICE INSTANCES
WITH RINGPOP @ GITHUB.COM/UBER/RINGPOP

EACH DEMAND WORKER
OWNS A PORTION OF THE

KEYSPACE

> hash('10.31.1.2:9000')
53554892

> hash('10.31.8.9:9000')
1325776234

232 HASH WORKER ADDRESSES

> hash('33e2dc8c-16fd-4a19-9fad-4ebfc76c66c9')
2312992577

> hash('8828169c-69c5-4b79-ae5e-6204c5f615ff')
2640491360

HASH APPLICATION IDS

RELIABLE BACKGROUND OPERATIONS
210

232

VNODE
KEYSPACE

(OUTER RING)
FIXED

AND SMALLER

ENTITY
KEYSPACE

(INNER RING)
DYNAMIC

AND LARGER

WITH HASH RING TECHNOLOGY

RELIABLE BACKGROUND OPERATIONS
WITH HASH RING TECHNOLOGY

DEMAND A WORKER
RECEIVES DELIVERY &

INITIATES DISPATCH

DEMAND A WORKER
WRITES UUID TO VNODE

SET IN THE DB AND
STARTS TIMER

2

DEMAND A WORKER
CRASHES BEFORE IT
EXPIRES DISPATCH

3

Demand
ARiak

hash(uuid) % 1024POST /jobs

1

RELIABLE BACKGROUND OPERATIONS

DEMAND B DETECTS
MEMBERSHIP CHANGE IN

RING

4

DEMAND B LOADS VNODE SET
FROM DB AND RESTORES

BACKGROUND TIMERS

6

for vnode in range(0, 1023)
 if lookup(vnode) == whoami()
 restore(load_uuids(vnode))

Riak

WITH HASH RING TECHNOLOGY

5

0 1023

DEMAND B SCANS
ENTIRE VNODE

KEYSPACE

failure, monitoring
and alerting
CHAPTER 5 OF 8

FAILURE TESTING MICROSERVICES
WITH REPEATABLE FAILURE SCENARIOS

FAULT ISOLATION IN MICROSERVICES
WITH DEPLOYMENT PODS

DISPATCH
GATEWAY

DEMAND v1 SUPPLY v1

SUPPLY v2DEMAND v2

POD 1

POD 2

GEOFENCE
MICROSERVICE

FLIPR
MICROSERVICE

40.645244,
-73.9449975 POD 2

MICROSERVICE ALERTING
WITH GRAPHITE/NAGIOS INTEGRATED THRESHOLD CHECKS

IMPORTED PYTHON

BUILT AGAINST GRAPHITE

PER REPO THRESHOLDS

ALERTS THROUGH NAGIOS

scalability and
sharding

CHAPTER 6 OF 8

PARTITIONING A MICROSERVICE
A SCALABLE GEOSPATIAL INDEX

EARTH IS BROKEN UP INTO
CELLS. EACH CELL HAS AN ID.

GEOSPATIAL READS/WRITES
CONVERTS LAT/LNG TO CELL
ID. CELL ID IS THEN HASHED

ALONG RING.

REQUEST IS EITHER HANDLED
OR FORWARDED BY ONE OF
THE 1300 GEOSPATIAL INDEX

WORKERS.

> convert(40.645, -73.944)
“864c244”

> hash(“864c244”)
3747631425

> lookup(3747631425)
“10.31.1.2:9000”

1 2

864c244

3

READ
OR
WRITE

LOCATION-AWARE MICROSERVICES
WITH CONTEXT-SPECIFIC METADATA

1

POST /pickup
X-Uber-City-ID: 1
X-Uber-City-Name: New York

3

SERVICE PROCESSES REQUEST
WITHIN CONTEXT OF CITY

2

DISPATCH GATEWAY RESOLVES
LAT/LNG AGAINST GEOFENCE

SERVICE

DEVICE SENDS PICKUP
REQUEST TO DISPATCH

GATEWAY

POST /pickup
?lat=40.70&lng=-73.97

DISPATCH
GATEWAY

DISPATCH
GATEWAY

performance and
diagnostics
CHAPTER 7 OF 8

HIGH-PERFORMANCE MICROSERVICES
WITH TCHANNEL @ GITHUB.COM/UBER/TCHANNEL

MULTIPLEXING

STREAMING

RETRIES + CIRCUIT BREAKING

POWERS RINGPOP

PERFORMANT

HIGH-PERFORMANCE MICROSERVICES
WITH NODESTAP @ GITHUB.COM/UBER/NODE-STAP

1

2

TORCH LIVE PROCESS

OPEN FLAMEGRAPH IN BROWSER

DEBUGGING MICROSERVICES
INSPECT INTERNALS WITH NODE REPL

1 CURL REPL ENDPOINT FOR REPL PORT

2 TELNET INTO REPL

3 INSPECT THE STATE OF YOUR WORKER

the next
generation
CHAPTER 8 OF 8

NEXT GENERATION MICROSERVICES
A OVERLAY NETWORK FOR MICROSERVICE ROUTING

DISCO
MICROSERVICE

SUPPLY
MICROSERVICE

DEMAND
MICROSERVICE

OPTIC
MICROSERVICE

REGISTER
REGISTER

SEND

FORWARD SEND

ROUTING SERVICE

THANKS!

Presented by Jeff Wolski <wolski@uber.com>
Uber is hiring!

